-
Notifications
You must be signed in to change notification settings - Fork 1
/
adabnn.py
437 lines (393 loc) · 16.1 KB
/
adabnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#@title Dependencies
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import random
import numpy as np
import keras
from datetime import datetime
from keras import backend as K
from keras.models import Model
from keras.layers import Activation,Dense,Conv2D,Input,BatchNormalization,concatenate,Flatten
from keras.callbacks import EarlyStopping
from keras.initializers import Initializer
from keras.optimizers import SGD
from keras.constraints import max_norm
from keras.engine.topology import get_source_inputs
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.utils.generic_utils import deserialize_keras_object
from keras.utils.generic_utils import serialize_keras_object
from keras.engine import Layer
print('Last update: ', str(datetime.now()))
#@title Cost function
def F(y_true, y_pred):
return K.mean(K.log( 1 + K.exp(1. - y_true * y_pred)), axis=-1)
print('Cost functions updated at: ', str(datetime.now()))
#@title Regularization function
lmbda = 10**-4
beta = 0
def RademacherComplexity(weight_matrix):
M = weight_matrix.shape[0].value
radNoise = K.variable([[random.choice([-1,1]) for k in range(M)]]).value()
weight_matrix_sum = K.variable([K.sum(weight_matrix, axis=1)]).value()
R = (1 / M) * K.dot(radNoise,K.transpose(weight_matrix_sum))
R = (lmbda * R + beta) * (0.01 * K.sum(K.abs(weight_matrix)))
return R
print('Regularization function updated at: ', str(datetime.now()))
#@title Initializer function
def _compute_fans(shape, data_format='channels_last'):
"""Computes the number of input and output units for a weight shape.
# Arguments
shape: Integer shape tuple.
data_format: Image data format to use for convolution kernels.
Note that all kernels in Keras are standardized on the
`channels_last` ordering (even when inputs are set
to `channels_first`).
# Returns
A tuple of scalars, `(fan_in, fan_out)`.
# Raises
ValueError: in case of invalid `data_format` argument.
"""
if len(shape) == 2:
fan_in = shape[0]
fan_out = shape[1]
elif len(shape) in {3, 4, 5}:
# Assuming convolution kernels (1D, 2D or 3D).
# TH kernel shape: (depth, input_depth, ...)
# TF kernel shape: (..., input_depth, depth)
if data_format == 'channels_first':
receptive_field_size = np.prod(shape[2:])
fan_in = shape[1] * receptive_field_size
fan_out = shape[0] * receptive_field_size
elif data_format == 'channels_last':
receptive_field_size = np.prod(shape[:-2])
fan_in = shape[-2] * receptive_field_size
fan_out = shape[-1] * receptive_field_size
else:
raise ValueError('Invalid data_format: ' + data_format)
else:
# No specific assumptions.
fan_in = np.sqrt(np.prod(shape))
fan_out = np.sqrt(np.prod(shape))
return fan_in, fan_out
def sign_binarization(x):
return K.sign(x)
#if random.uniform(0,1) <= hard_sigmoid:
# return 1
#else:
# return -1
def stochastic_binarization(x):
hard_sigmoid = K.clip((x+1.)/2,0,1)
tensor_bool = K.less_equal(K.random_uniform(shape=x.shape,minval=0.0,maxval=1.0),hard_sigmoid)
tensor_float = K.cast(tensor_bool,dtype='float32')
tensor_float_comp = tensor_float + K.constant(-1,shape=tensor_float.shape,dtype='float32')
return tensor_float + tensor_float_comp
#if random.uniform(0,1) <= hard_sigmoid:
# return 1
#else:
# return -1
class BinaryUniform(Initializer):
"""Initializer that generates a binarized tensor from a uniform distribution.
# Arguments
minval: A python scalar or a scalar tensor. Lower bound of the range
of random values to generate.
maxval: A python scalar or a scalar tensor. Upper bound of the range
of random values to generate. Defaults to 1 for float types.
seed: A Python integer. Used to seed the random generator.
"""
def __init__(self, minval=-0.05, maxval=0.05, seed=None):
self.minval = minval
self.maxval = maxval
self.seed = seed
def __call__(self, shape, dtype=None):
value = K.random_uniform(shape, -1, 1,
dtype=dtype, seed=self.seed)
return sign_binarization(value)
def get_config(self):
return {
'minval': self.minval,
'maxval': self.maxval,
'seed': self.seed,
}
class BinaryGlorot_uniform(Initializer):
"""Binarized Glorot uniform initializer, also called Xavier uniform initializer.
It draws samples from a uniform distribution within [-limit, limit]
where `limit` is `sqrt(6 / (fan_in + fan_out))`
where `fan_in` is the number of input units in the weight tensor
and `fan_out` is the number of output units in the weight tensor.
# Arguments
seed: A Python integer. Used to seed the random generator.
# Returns
An initializer.
# References
Glorot & Bengio, AISTATS 2010
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
"""
def __init__(self, scale=1.0,
mode='fan_avg',
distribution='uniform',
seed=None):
self.scale = scale
self.mode = mode
self.distribution = distribution
self.seed = seed
def __call__(self, shape, dtype=None):
fan_in, fan_out = _compute_fans(shape)
scale = self.scale
scale /= max(1., float(fan_in + fan_out) / 2)
limit = np.sqrt(3. * scale)
value = K.random_uniform(shape, -limit, limit,
dtype=dtype, seed=self.seed)
return sign_binarization(value)
def get_config(self):
return {
'scale': self.scale,
'mode': self.mode,
'distribution': self.distribution,
'seed': self.seed
}
print('Initializer functions updated at: ', str(datetime.now()))
#@title Activation functions
# Activations
def sign_binarization(x):
return K.sign(x)
#if random.uniform(0,1) <= hard_sigmoid:
# return 1
#else:
# return -1
def stochastic_binarization(x):
hard_sigmoid = K.clip((x+1.)/2,0,1)
tensor_bool = K.less_equal(K.random_uniform(shape=x.shape,minval=0.0,maxval=1.1),hard_sigmoid)
tensor_float = K.cast(tensor_bool,dtype='float32')
tensor_float_comp = tensor_float + K.constant(-1,shape=tensor_float.shape,dtype='float32')
return tensor_float + tensor_float_comp
#if random.uniform(0,1) <= hard_sigmoid:
# return 1
#else:
# return -1
def BinaryRelu(x, alpha=0., max_value=None):
value = K.relu(x, alpha=alpha, max_value=max_value)
return sign_binarization(value)
print('Activation functions updated at: ', str(datetime.now()))
#@title Declaring AdaBnn model
def AdaBnn(x_train,y_train,conf,classes=2,verbose=1):
"""Instatiates the AdaBnn architecture.
# Arguments
x_train: feature matrix for AdaNet framework.
y_train: label matrix for AdaNet framework.
conf: configuration parameters for adanet
conf = dict({
'network': {
'activation': 'relu',
'output_activation': 'sigmoid',
'optimizer': keras.optimizers.Adam(lr=0.0001),
'loss': 'binary_crossentropy',
},
'training':{
'batch_size': 32,
'epochs': 1,
},
'adanet':{
'B': 150,#3,
'T': 20#5
'delta': 1.01
}
})
classes: number of classes to predict
verbose: if 1: track the status of the training,
if 2: track also the timing for each part.
# Returns
A Keras model instance."""
activation = conf['network']['activation']
output_activation = conf['network']['output_activation']
optimizer = conf['network']['optimizer']
loss = conf['network']['loss']
batch_size = conf['training']['batch_size']
epochs = conf['training']['epochs']
B = conf['adabnn']['B']
T = conf['adabnn']['T']
delta = conf['adabnn']['delta']
seed = conf['adabnn']['seed']
if classes == 2:
output_shape = 1
if classes > 2:
output_shape = classes
H = {}
perf = []
input_shape = x_train.shape[1::]
inp = Input(shape=input_shape,name = 'input_layer')
if len(input_shape) > 1:
raise ValueError('The input data features'
'will be flatten into one dimension'
'next to the input layer')
prep = Flatten(name='flat')(inp)
h11 = Dense(B,
activation=activation,
kernel_regularizer=RademacherComplexity,
kernel_initializer=BinaryGlorot_uniform(seed=seed),
use_bias=False,
name = 'h11')(prep)
H[0] = ['h11']
else:
h11 = Dense(B,
activation=activation,
kernel_regularizer=RademacherComplexity,
kernel_initializer=BinaryGlorot_uniform(seed=seed),
use_bias=False,
name = 'h11')(inp)
H[0] = ['h11']
out = Dense(output_shape,
activation=output_activation,
kernel_regularizer=RademacherComplexity,
kernel_initializer=BinaryGlorot_uniform(seed=seed),
use_bias=False,
name = 'output_layer')(h11)
model = Model(inp,out)
depth = 1
for t in range(0,T):
H1 = H.copy()
H2 = H.copy()
if verbose in [1,2]: print('[INFO] Iteration: ',t + 1,'\n[INFO] Preparing H')
for depth_h1 in range(1,depth+1):
if depth_h1 == 1:
h11_name = 'h' + str(depth_h1) + str(t+2)
if verbose in [1,2]: print('[INFO] Adding layer node: ',h11_name)
h1_layers = [Dense(B,
activation=activation,
kernel_regularizer=RademacherComplexity,
use_bias=False,
name=h11_name)(model.get_layer('input_layer').output)]
H1[t+1] = [h11_name]
else:
conc = [model.get_layer(h).output for h in [h[depth_h1-2] for n,h in H.items() if len(h) >= (depth_h1-1)] ]
conc.append(h1_layers[depth_h1-2])
h22_name = 'h' + str(depth_h1) + str(t+2)
if verbose in [1,2]: print('[INFO] Adding layer node: ',h22_name)
h1_layers.append(Dense(B,
activation=activation,
kernel_regularizer=RademacherComplexity,
kernel_initializer=BinaryGlorot_uniform(seed=seed),
use_bias=False,
name=h22_name)(concatenate(conc)))
H1[t+1].append(h22_name)
conc1 = [model.get_layer(y[-1]).output for (k,y) in H.items()]
conc1.append(h1_layers[-1])
out = Dense(output_shape,
activation=output_activation,
kernel_regularizer=RademacherComplexity,
kernel_initializer=BinaryGlorot_uniform(seed=seed),
use_bias=False,
name='output_layer')(concatenate(conc1))
mo1 = Model(inputs=inp,
outputs=out)
if verbose == 2:
t1 = time.time()
print('[TIMING] Defining layers and stacking them', t1 - t0)
mo1.compile(optimizer=optimizer,
loss=loss,
metrics=['accuracy'])
if verbose == 2:
t2 = time.time()
print('[TIMING] Compilation of the model', t2-t1)
mo1.fit(x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
shuffle=True,
verbose=0)
if verbose == 2:
t3 = time.time()
print('[TIMING] Fitting of the model', t3-t2)
loss_h1,acc_h1 = mo1.evaluate(x_train,
y_train,
batch_size=batch_size,
verbose=0)
if verbose == 2:
t4 = time.time()
print('[TIMING] Evaluation of the model', t4-t3)
if verbose in [1,2]: print('[INFO] Preparing Hprime')
for depth_h2 in range(1,depth+2):
if depth_h2 == 1:
h11_name = 'h' + str(depth_h2) + str(t+2)
if verbose in [1,2]: print('[INFO] Adding layer node: ',h11_name)
h2_layers = [Dense(B,
activation=activation,
kernel_regularizer=RademacherComplexity,
use_bias=False,
name=h11_name)(model.get_layer('input_layer').output)]
H2[t+1] = [h11_name]
else:
conc = [model.get_layer(h).output for h in [h[depth_h1-2] for n,h in H.items() if len(h) >= (depth_h1-1)] ]
conc.append(h2_layers[depth_h2-2])
h22_name = 'h' + str(depth_h2) + str(t+2)
if verbose in [1,2]: print('[INFO] Adding layer node: ',h22_name)
h2_layers.append(Dense(B,
activation=activation,
kernel_regularizer=RademacherComplexity,
use_bias=False,
name=h22_name)(concatenate(conc)))
H2[t+1].append(h22_name)
conc2 = [model.get_layer(y[-1]).output for (k,y) in H.items()]
conc2.append(h2_layers[-1])
out = Dense(output_shape,
activation=output_activation,
kernel_regularizer=RademacherComplexity,
kernel_initializer=BinaryGlorot_uniform(seed=seed),
use_bias=False,
name='output_layer')(concatenate(conc2))
mo2 = Model(inputs=inp,
outputs=out)
if verbose == 2:
t5 = time.time()
print('[TIMING] Defining layers and stacking them', t5 - t4)
mo2.compile(optimizer=optimizer,
loss=loss,
metrics=['accuracy'])
if verbose == 2:
t6 = time.time()
print('[TIMING] Compilation of the model', t6 - t5)
mo2.fit(x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
shuffle=True,
verbose=0)
if verbose == 2:
t7 = time.time()
print('[TIMING] Fitting of the model', t7 - t6)
loss_h2,acc_h2 = mo2.evaluate(x_train,
y_train,
batch_size=batch_size,
verbose=0)
if verbose == 2:
t8 = time.time()
print('[TIMING] Evaluation of the model', t8 - t7)
if loss_h1 < loss_h2:
model = mo1
H = H1
loss_selected = loss_h1
acc_selected = acc_h1
if verbose in [1,2]: print('[INFO] H was selected')
elif loss_h1 > loss_h2:
if verbose in [1,2]: print('[INFO] Hprime was selected')
model = mo2
H = H2
loss_selected = loss_h2
acc_selected = acc_h2
depth = depth + 1
else:
model = mo1
H = H1
loss_selected = loss_h1
acc_selected = acc_h1
if verbose in [1,2]: print('[INFO] Choosing H, without improving the loss function')
break
perf.append({
"iteration": t + 1,
"accuracy": acc_selected,
"cost function": loss_selected
})
return model,perf