Skip to content
forked from nf-core/hic

Analysis of Chromosome Conformation Capture data (Hi-C)

License

Notifications You must be signed in to change notification settings

withermatt/hic-nf-core

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nf-core/hic nf-core/hic

AWS CICite with Zenodo

Nextflow run with conda run with docker run with singularity Launch on Nextflow Tower

Get help on SlackFollow on TwitterWatch on YouTube

Introduction

nf-core/hic is a bioinformatics best-practice analysis pipeline for Analysis of Chromosome Conformation Capture data (Hi-C).

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources.The results obtained from the full-sized test can be viewed on the nf-core website.

Pipeline summary

  1. Read QC (FastQC)
  2. Hi-C data processing
    1. HiC-Pro
      1. Mapping using a two steps strategy to rescue reads spanning the ligation sites (bowtie2)
      2. Detection of valid interaction products
      3. Duplicates removal
      4. Generate raw and normalized contact maps (iced)
  3. Create genome-wide contact maps at various resolutions (cooler)
  4. Contact maps normalization using balancing algorithm (cooler)
  5. Export to various contact maps formats (HiC-Pro, cooler)
  6. Quality controls (HiC-Pro, HiCExplorer)
  7. Compartments calling (cooltools)
  8. TADs calling (HiCExplorer, cooltools)
  9. Quality control report (MultiQC)

Quick Start

  1. Install Nextflow (>=22.10.1)

  2. Install any of Docker, Singularity (you can follow this tutorial), Podman, Shifter or Charliecloud for full pipeline reproducibility (you can use Conda both to install Nextflow itself and also to manage software within pipelines. Please only use it within pipelines as a last resort; see docs).

  3. Download the pipeline and test it on a minimal dataset with a single command:

    nextflow run nf-core/hic -profile test,YOURPROFILE --outdir <OUTDIR>

    Note that some form of configuration will be needed so that Nextflow knows how to fetch the required software. This is usually done in the form of a config profile (YOURPROFILE in the example command above). You can chain multiple config profiles in a comma-separated string.

    • The pipeline comes with config profiles called docker, singularity, podman, shifter, charliecloud and conda which instruct the pipeline to use the named tool for software management. For example, -profile test,docker.
    • Please check nf-core/configs to see if a custom config file to run nf-core pipelines already exists for your Institute. If so, you can simply use -profile <institute> in your command. This will enable either docker or singularity and set the appropriate execution settings for your local compute environment.
    • If you are using singularity, please use the nf-core download command to download images first, before running the pipeline. Setting the NXF_SINGULARITY_CACHEDIR or singularity.cacheDir Nextflow options enables you to store and re-use the images from a central location for future pipeline runs.
    • If you are using conda, it is highly recommended to use the NXF_CONDA_CACHEDIR or conda.cacheDir settings to store the environments in a central location for future pipeline runs.
  4. Start running your own analysis!

    nextflow run nf-core/hic --input samplesheet.csv --outdir <OUTDIR> --genome GRCh37 -profile <docker/singularity/podman/shifter/charliecloud/conda/institute>

Documentation

The nf-core/hic pipeline comes with documentation about the pipeline usage, parameters and output.

Credits

nf-core/hic was originally written by Nicolas Servant.

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #hic channel (you can join with this invite).

Citations

If you use nf-core/hic for your analysis, please cite it using the following doi: doi: 10.5281/zenodo.2669512

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.

About

Analysis of Chromosome Conformation Capture data (Hi-C)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Nextflow 33.8%
  • Python 30.9%
  • Groovy 19.3%
  • C++ 14.1%
  • Other 1.9%