From d7cc9d044b32ffbadaa5db1d11f28a99e0785a0d Mon Sep 17 00:00:00 2001 From: Kevin Markham Date: Fri, 9 Oct 2015 10:57:29 -0400 Subject: [PATCH] add materials for classes 17 and 18 --- README.md | 5 +- code/17_bikeshare_exercise_nb.py | 68 ++ code/17_decision_trees_nb.py | 432 +++++++++++ code/18_ensembling_nb.py | 491 ++++++++++++ notebooks/17_bikeshare_exercise.ipynb | 212 ++++++ notebooks/17_decision_trees.ipynb | 898 ++++++++++++++++++++++ notebooks/18_ensembling.ipynb | 1013 +++++++++++++++++++++++++ other/model_comparison.md | 37 + 8 files changed, 3154 insertions(+), 2 deletions(-) create mode 100644 code/17_bikeshare_exercise_nb.py create mode 100644 code/17_decision_trees_nb.py create mode 100644 code/18_ensembling_nb.py create mode 100644 notebooks/17_bikeshare_exercise.ipynb create mode 100644 notebooks/17_decision_trees.ipynb create mode 100644 notebooks/18_ensembling.ipynb diff --git a/README.md b/README.md index 9b9c39b..454154a 100644 --- a/README.md +++ b/README.md @@ -468,8 +468,6 @@ Tuesday | Thursday * These examples may help you to better understand the process of feature engineering: predicting the number of [passengers at a train station](https://medium.com/@chris_bour/french-largest-data-science-challenge-ever-organized-shows-the-unreasonable-effectiveness-of-open-8399705a20ef), identifying [fraudulent users of an online store](https://docs.google.com/presentation/d/1UdI5NY-mlHyseiRVbpTLyvbrHxY8RciHp5Vc-ZLrwmU/edit#slide=id.p), identifying [bots in an online auction](https://www.kaggle.com/c/facebook-recruiting-iv-human-or-bot/forums/t/14628/share-your-secret-sauce), predicting who will [subscribe to the next season of an orchestra](http://blog.kaggle.com/2015/01/05/kaggle-inclass-stanfords-getting-a-handel-on-data-science-winners-report/), and evaluating the [quality of e-commerce search engine results](http://blog.kaggle.com/2015/07/22/crowdflower-winners-interview-3rd-place-team-quartet/). * [Our perfect submission](https://www.kaggle.com/c/restaurant-revenue-prediction/forums/t/13950/our-perfect-submission) is a fun read about how great performance on the [public leaderboard](https://www.kaggle.com/c/restaurant-revenue-prediction/leaderboard/public) does not guarantee that a model will generalize to new data. -