forked from rasmusbergpalm/DeepLearnToolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
caebbp.m
29 lines (25 loc) · 917 Bytes
/
caebbp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
function cae = caebbp(cae)
%% backprop deltas
for i = 1 : numel(cae.o)
% output delta delta
cae.odd{i} = (cae.o{i} .* (1 - cae.o{i}) .* cae.edgemask) .^ 2;
% delta delta c
cae.ddc{i} = sum(cae.odd{i}(:)) / size(cae.odd{i}, 1);
end
for j = 1 : numel(cae.a) % calc activation delta deltas
z = 0;
for i = 1 : numel(cae.o)
z = z + convn(cae.odd{i}, flipall(cae.ok{i}{j} .^ 2), 'full');
end
cae.add{j} = (cae.a{j} .* (1 - cae.a{j})) .^ 2 .* z;
end
%% calc params delta deltas
ns = size(cae.odd{1}, 1);
for j = 1 : numel(cae.a)
cae.ddb{j} = sum(cae.add{j}(:)) / ns;
for i = 1 : numel(cae.o)
cae.ddok{i}{j} = convn(flipall(cae.a{j} .^ 2), cae.odd{i}, 'valid') / ns;
cae.ddik{i}{j} = convn(cae.add{j}, flipall(cae.i{i} .^ 2), 'valid') / ns;
end
end
end