This example implements the paper Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
The implementation is very close to the Torch implementation dcgan.torch
After every 100 training iterations, the files real_samples.png
and fake_samples.png
are written to disk
with the samples from the generative model.
After every epoch, models are saved to: netG_epoch_%d.pth
and netD_epoch_%d.pth
usage: main.py [-h] --dataset DATASET --dataroot DATAROOT [--workers WORKERS]
[--batchSize BATCHSIZE] [--imageSize IMAGESIZE] [--nz NZ]
[--ngf NGF] [--ndf NDF] [--niter NITER] [--lr LR]
[--beta1 BETA1] [--cuda] [--ngpu NGPU] [--netG NETG]
[--netD NETD]
optional arguments:
-h, --help show this help message and exit
--dataset DATASET cifar10 | lsun | imagenet | folder | lfw
--dataroot DATAROOT path to dataset
--workers WORKERS number of data loading workers
--batchSize BATCHSIZE
input batch size
--imageSize IMAGESIZE
the height / width of the input image to network
--nz NZ size of the latent z vector
--ngf NGF
--ndf NDF
--niter NITER number of epochs to train for
--lr LR learning rate, default=0.0002
--beta1 BETA1 beta1 for adam. default=0.5
--cuda enables cuda
--ngpu NGPU number of GPUs to use
--netG NETG path to netG (to continue training)
--netD NETD path to netD (to continue training)