forked from apache/airflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
625 lines (526 loc) · 21.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# -*- coding: utf-8 -*-
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import datetime
import os
import unittest
import time
from airflow import models, settings, AirflowException
from airflow.exceptions import AirflowSkipException
from airflow.models import DAG, TaskInstance as TI
from airflow.models import State as ST
from airflow.models import DagModel
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator
from airflow.ti_deps.deps.trigger_rule_dep import TriggerRuleDep
from airflow.utils.state import State
from mock import patch
from nose_parameterized import parameterized
DEFAULT_DATE = datetime.datetime(2016, 1, 1)
TEST_DAGS_FOLDER = os.path.join(
os.path.dirname(os.path.realpath(__file__)), 'dags')
class DagTest(unittest.TestCase):
def test_parms_not_passed_is_empty_dict(self):
"""
Test that when 'params' is _not_ passed to a new Dag, that the params
attribute is set to an empty dictionary.
"""
dag = models.DAG('test-dag')
assert type(dag.params) == dict
assert len(dag.params) == 0
def test_params_passed_and_params_in_default_args_no_override(self):
"""
Test that when 'params' exists as a key passed to the default_args dict
in addition to params being passed explicitly as an argument to the
dag, that the 'params' key of the default_args dict is merged with the
dict of the params argument.
"""
params1 = {'parameter1': 1}
params2 = {'parameter2': 2}
dag = models.DAG('test-dag',
default_args={'params': params1},
params=params2)
params_combined = params1.copy()
params_combined.update(params2)
assert dag.params == params_combined
def test_dag_as_context_manager(self):
"""
Test DAG as a context manager.
When used as a context manager, Operators are automatically added to
the DAG (unless they specifiy a different DAG)
"""
dag = DAG(
'dag',
start_date=DEFAULT_DATE,
default_args={'owner': 'owner1'})
dag2 = DAG(
'dag2',
start_date=DEFAULT_DATE,
default_args={'owner': 'owner2'})
with dag:
op1 = DummyOperator(task_id='op1')
op2 = DummyOperator(task_id='op2', dag=dag2)
self.assertIs(op1.dag, dag)
self.assertEqual(op1.owner, 'owner1')
self.assertIs(op2.dag, dag2)
self.assertEqual(op2.owner, 'owner2')
with dag2:
op3 = DummyOperator(task_id='op3')
self.assertIs(op3.dag, dag2)
self.assertEqual(op3.owner, 'owner2')
with dag:
with dag2:
op4 = DummyOperator(task_id='op4')
op5 = DummyOperator(task_id='op5')
self.assertIs(op4.dag, dag2)
self.assertIs(op5.dag, dag)
self.assertEqual(op4.owner, 'owner2')
self.assertEqual(op5.owner, 'owner1')
with DAG('creating_dag_in_cm', start_date=DEFAULT_DATE) as dag:
DummyOperator(task_id='op6')
self.assertEqual(dag.dag_id, 'creating_dag_in_cm')
self.assertEqual(dag.tasks[0].task_id, 'op6')
class DagRunTest(unittest.TestCase):
def test_id_for_date(self):
run_id = models.DagRun.id_for_date(
datetime.datetime(2015, 1, 2, 3, 4, 5, 6, None))
assert run_id == 'scheduled__2015-01-02T03:04:05', (
'Generated run_id did not match expectations: {0}'.format(run_id))
class DagBagTest(unittest.TestCase):
def test_get_existing_dag(self):
"""
test that were're able to parse some example DAGs and retrieve them
"""
dagbag = models.DagBag(include_examples=True)
some_expected_dag_ids = ["example_bash_operator",
"example_branch_operator"]
for dag_id in some_expected_dag_ids:
dag = dagbag.get_dag(dag_id)
assert dag is not None
assert dag.dag_id == dag_id
assert dagbag.size() >= 7
def test_get_non_existing_dag(self):
"""
test that retrieving a non existing dag id returns None without crashing
"""
dagbag = models.DagBag(include_examples=True)
non_existing_dag_id = "non_existing_dag_id"
assert dagbag.get_dag(non_existing_dag_id) is None
def test_process_file_that_contains_multi_bytes_char(self):
"""
test that we're able to parse file that contains multi-byte char
"""
from tempfile import NamedTemporaryFile
f = NamedTemporaryFile()
f.write('\u3042'.encode('utf8')) # write multi-byte char (hiragana)
f.flush()
dagbag = models.DagBag(include_examples=True)
assert dagbag.process_file(f.name) == []
def test_zip(self):
"""
test the loading of a DAG within a zip file that includes dependencies
"""
dagbag = models.DagBag()
dagbag.process_file(os.path.join(TEST_DAGS_FOLDER, "test_zip.zip"))
assert dagbag.get_dag("test_zip_dag")
@patch.object(DagModel,'get_current')
def test_get_dag_without_refresh(self, mock_dagmodel):
"""
Test that, once a DAG is loaded, it doesn't get refreshed again if it
hasn't been expired.
"""
dag_id = 'example_bash_operator'
mock_dagmodel.return_value = DagModel()
mock_dagmodel.return_value.last_expired = None
mock_dagmodel.return_value.fileloc = 'foo'
class TestDagBag(models.DagBag):
process_file_calls = 0
def process_file(self, filepath, only_if_updated=True, safe_mode=True):
if 'example_bash_operator.py' in filepath:
TestDagBag.process_file_calls += 1
super(TestDagBag, self).process_file(filepath, only_if_updated, safe_mode)
dagbag = TestDagBag(include_examples=True)
processed_files = dagbag.process_file_calls
# Should not call process_file agani, since it's already loaded during init.
assert dagbag.process_file_calls == 1
assert dagbag.get_dag(dag_id) != None
assert dagbag.process_file_calls == 1
class TaskInstanceTest(unittest.TestCase):
def test_set_dag(self):
"""
Test assigning Operators to Dags, including deferred assignment
"""
dag = DAG('dag', start_date=DEFAULT_DATE)
dag2 = DAG('dag2', start_date=DEFAULT_DATE)
op = DummyOperator(task_id='op_1', owner='test')
# no dag assigned
self.assertFalse(op.has_dag())
self.assertRaises(AirflowException, getattr, op, 'dag')
# no improper assignment
with self.assertRaises(TypeError):
op.dag = 1
op.dag = dag
# no reassignment
with self.assertRaises(AirflowException):
op.dag = dag2
# but assigning the same dag is ok
op.dag = dag
self.assertIs(op.dag, dag)
self.assertIn(op, dag.tasks)
def test_infer_dag(self):
dag = DAG('dag', start_date=DEFAULT_DATE)
dag2 = DAG('dag2', start_date=DEFAULT_DATE)
op1 = DummyOperator(task_id='test_op_1', owner='test')
op2 = DummyOperator(task_id='test_op_2', owner='test')
op3 = DummyOperator(task_id='test_op_3', owner='test', dag=dag)
op4 = DummyOperator(task_id='test_op_4', owner='test', dag=dag2)
# double check dags
self.assertEqual(
[i.has_dag() for i in [op1, op2, op3, op4]],
[False, False, True, True])
# can't combine operators with no dags
self.assertRaises(AirflowException, op1.set_downstream, op2)
# op2 should infer dag from op1
op1.dag = dag
op1.set_downstream(op2)
self.assertIs(op2.dag, dag)
# can't assign across multiple DAGs
self.assertRaises(AirflowException, op1.set_downstream, op4)
self.assertRaises(AirflowException, op1.set_downstream, [op3, op4])
def test_bitshift_compose_operators(self):
dag = DAG('dag', start_date=DEFAULT_DATE)
op1 = DummyOperator(task_id='test_op_1', owner='test')
op2 = DummyOperator(task_id='test_op_2', owner='test')
op3 = DummyOperator(task_id='test_op_3', owner='test')
op4 = DummyOperator(task_id='test_op_4', owner='test')
op5 = DummyOperator(task_id='test_op_5', owner='test')
# can't compose operators without dags
with self.assertRaises(AirflowException):
op1 >> op2
dag >> op1 >> op2 << op3
# make sure dag assignment carries through
# using __rrshift__
self.assertIs(op1.dag, dag)
self.assertIs(op2.dag, dag)
self.assertIs(op3.dag, dag)
# op2 should be downstream of both
self.assertIn(op2, op1.downstream_list)
self.assertIn(op2, op3.downstream_list)
# test dag assignment with __rlshift__
dag << op4
self.assertIs(op4.dag, dag)
# dag assignment with __rrshift__
dag >> op5
self.assertIs(op5.dag, dag)
@patch.object(TI, 'pool_full')
def test_run_pooling_task(self, mock_pool_full):
"""
test that running task with mark_success param update task state as
SUCCESS without running task.
"""
# Mock the pool out with a full pool because the pool doesn't actually exist
mock_pool_full.return_value = True
dag = models.DAG(dag_id='test_run_pooling_task')
task = DummyOperator(task_id='test_run_pooling_task_op', dag=dag,
pool='test_run_pooling_task_pool', owner='airflow',
start_date=datetime.datetime(2016, 2, 1, 0, 0, 0))
ti = TI(
task=task, execution_date=datetime.datetime.now())
ti.run()
self.assertEqual(ti.state, models.State.QUEUED)
@patch.object(TI, 'pool_full')
def test_run_pooling_task_with_mark_success(self, mock_pool_full):
"""
test that running task with mark_success param update task state as SUCCESS
without running task.
"""
# Mock the pool out with a full pool because the pool doesn't actually exist
mock_pool_full.return_value = True
dag = models.DAG(dag_id='test_run_pooling_task_with_mark_success')
task = DummyOperator(
task_id='test_run_pooling_task_with_mark_success_op',
dag=dag,
pool='test_run_pooling_task_with_mark_success_pool',
owner='airflow',
start_date=datetime.datetime(2016, 2, 1, 0, 0, 0))
ti = TI(
task=task, execution_date=datetime.datetime.now())
ti.run(mark_success=True)
self.assertEqual(ti.state, models.State.SUCCESS)
def test_run_pooling_task_with_skip(self):
"""
test that running task which returns AirflowSkipOperator will end
up in a SKIPPED state.
"""
def raise_skip_exception():
raise AirflowSkipException
dag = models.DAG(dag_id='test_run_pooling_task_with_skip')
task = PythonOperator(
task_id='test_run_pooling_task_with_skip',
dag=dag,
python_callable=raise_skip_exception,
owner='airflow',
start_date=datetime.datetime(2016, 2, 1, 0, 0, 0))
ti = TI(
task=task, execution_date=datetime.datetime.now())
ti.run()
self.assertTrue(ti.state == models.State.SKIPPED)
def test_retry_delay(self):
"""
Test that retry delays are respected
"""
dag = models.DAG(dag_id='test_retry_handling')
task = BashOperator(
task_id='test_retry_handling_op',
bash_command='exit 1',
retries=1,
retry_delay=datetime.timedelta(seconds=3),
dag=dag,
owner='airflow',
start_date=datetime.datetime(2016, 2, 1, 0, 0, 0))
def run_with_error(ti):
try:
ti.run()
except AirflowException:
pass
ti = TI(
task=task, execution_date=datetime.datetime.now())
# first run -- up for retry
run_with_error(ti)
self.assertEqual(ti.state, State.UP_FOR_RETRY)
self.assertEqual(ti.try_number, 1)
# second run -- still up for retry because retry_delay hasn't expired
run_with_error(ti)
self.assertEqual(ti.state, State.UP_FOR_RETRY)
# third run -- failed
time.sleep(3)
run_with_error(ti)
self.assertEqual(ti.state, State.FAILED)
@patch.object(TI, 'pool_full')
def test_retry_handling(self, mock_pool_full):
"""
Test that task retries are handled properly
"""
# Mock the pool with a pool with slots open since the pool doesn't actually exist
mock_pool_full.return_value = False
dag = models.DAG(dag_id='test_retry_handling')
task = BashOperator(
task_id='test_retry_handling_op',
bash_command='exit 1',
retries=1,
retry_delay=datetime.timedelta(seconds=0),
dag=dag,
owner='airflow',
start_date=datetime.datetime(2016, 2, 1, 0, 0, 0))
def run_with_error(ti):
try:
ti.run()
except AirflowException:
pass
ti = TI(
task=task, execution_date=datetime.datetime.now())
# first run -- up for retry
run_with_error(ti)
self.assertEqual(ti.state, State.UP_FOR_RETRY)
self.assertEqual(ti.try_number, 1)
# second run -- fail
run_with_error(ti)
self.assertEqual(ti.state, State.FAILED)
self.assertEqual(ti.try_number, 2)
# Clear the TI state since you can't run a task with a FAILED state without
# clearing it first
ti.set_state(None, settings.Session())
# third run -- up for retry
run_with_error(ti)
self.assertEqual(ti.state, State.UP_FOR_RETRY)
self.assertEqual(ti.try_number, 3)
# fourth run -- fail
run_with_error(ti)
self.assertEqual(ti.state, State.FAILED)
self.assertEqual(ti.try_number, 4)
def test_next_retry_datetime(self):
delay = datetime.timedelta(seconds=3)
delay_squared = datetime.timedelta(seconds=9)
max_delay = datetime.timedelta(seconds=10)
dag = models.DAG(dag_id='fail_dag')
task = BashOperator(
task_id='task_with_exp_backoff_and_max_delay',
bash_command='exit 1',
retries=3,
retry_delay=delay,
retry_exponential_backoff=True,
max_retry_delay=max_delay,
dag=dag,
owner='airflow',
start_date=datetime.datetime(2016, 2, 1, 0, 0, 0))
ti = TI(
task=task, execution_date=datetime.datetime.now())
ti.end_date = datetime.datetime.now()
ti.try_number = 1
dt = ti.next_retry_datetime()
self.assertEqual(dt, ti.end_date+delay)
ti.try_number = 2
dt = ti.next_retry_datetime()
self.assertEqual(dt, ti.end_date+delay_squared)
ti.try_number = 3
dt = ti.next_retry_datetime()
self.assertEqual(dt, ti.end_date+max_delay)
def test_depends_on_past(self):
dagbag = models.DagBag()
dag = dagbag.get_dag('test_depends_on_past')
dag.clear()
task = dag.tasks[0]
run_date = task.start_date + datetime.timedelta(days=5)
ti = TI(task, run_date)
# depends_on_past prevents the run
task.run(start_date=run_date, end_date=run_date)
ti.refresh_from_db()
self.assertIs(ti.state, None)
# ignore first depends_on_past to allow the run
task.run(
start_date=run_date,
end_date=run_date,
ignore_first_depends_on_past=True)
ti.refresh_from_db()
self.assertEqual(ti.state, State.SUCCESS)
# Parameterized tests to check for the correct firing
# of the trigger_rule under various circumstances
# Numeric fields are in order:
# successes, skipped, failed, upstream_failed, done
@parameterized.expand([
#
# Tests for all_success
#
['all_success', 5, 0, 0, 0, 0, True, None, True],
['all_success', 2, 0, 0, 0, 0, True, None, False],
['all_success', 2, 0, 1, 0, 0, True, ST.UPSTREAM_FAILED, False],
['all_success', 2, 1, 0, 0, 0, True, ST.SKIPPED, False],
#
# Tests for one_success
#
['one_success', 5, 0, 0, 0, 5, True, None, True],
['one_success', 2, 0, 0, 0, 2, True, None, True],
['one_success', 2, 0, 1, 0, 3, True, None, True],
['one_success', 2, 1, 0, 0, 3, True, None, True],
#
# Tests for all_failed
#
['all_failed', 5, 0, 0, 0, 5, True, ST.SKIPPED, False],
['all_failed', 0, 0, 5, 0, 5, True, None, True],
['all_failed', 2, 0, 0, 0, 2, True, ST.SKIPPED, False],
['all_failed', 2, 0, 1, 0, 3, True, ST.SKIPPED, False],
['all_failed', 2, 1, 0, 0, 3, True, ST.SKIPPED, False],
#
# Tests for one_failed
#
['one_failed', 5, 0, 0, 0, 0, True, None, False],
['one_failed', 2, 0, 0, 0, 0, True, None, False],
['one_failed', 2, 0, 1, 0, 0, True, None, True],
['one_failed', 2, 1, 0, 0, 3, True, None, False],
['one_failed', 2, 3, 0, 0, 5, True, ST.SKIPPED, False],
#
# Tests for done
#
['all_done', 5, 0, 0, 0, 5, True, None, True],
['all_done', 2, 0, 0, 0, 2, True, None, False],
['all_done', 2, 0, 1, 0, 3, True, None, False],
['all_done', 2, 1, 0, 0, 3, True, None, False]
])
def test_check_task_dependencies(self, trigger_rule, successes, skipped,
failed, upstream_failed, done,
flag_upstream_failed,
expect_state, expect_completed):
start_date = datetime.datetime(2016, 2, 1, 0, 0, 0)
dag = models.DAG('test-dag', start_date=start_date)
downstream = DummyOperator(task_id='downstream',
dag=dag, owner='airflow',
trigger_rule=trigger_rule)
for i in range(5):
task = DummyOperator(task_id='runme_{}'.format(i),
dag=dag, owner='airflow')
task.set_downstream(downstream)
run_date = task.start_date + datetime.timedelta(days=5)
ti = TI(downstream, run_date)
dep_results = TriggerRuleDep()._evaluate_trigger_rule(
ti=ti,
successes=successes,
skipped=skipped,
failed=failed,
upstream_failed=upstream_failed,
done=done,
flag_upstream_failed=flag_upstream_failed)
completed = all([dep.passed for dep in dep_results])
self.assertEqual(completed, expect_completed)
self.assertEqual(ti.state, expect_state)
def test_xcom_pull_after_success(self):
"""
tests xcom set/clear relative to a task in a 'success' rerun scenario
"""
key = 'xcom_key'
value = 'xcom_value'
dag = models.DAG(dag_id='test_xcom', schedule_interval='@monthly')
task = DummyOperator(
task_id='test_xcom',
dag=dag,
pool='test_xcom',
owner='airflow',
start_date=datetime.datetime(2016, 6, 2, 0, 0, 0))
exec_date = datetime.datetime.now()
ti = TI(
task=task, execution_date=exec_date)
ti.run(mark_success=True)
ti.xcom_push(key=key, value=value)
self.assertEqual(ti.xcom_pull(task_ids='test_xcom', key=key), value)
ti.run()
# The second run and assert is to handle AIRFLOW-131 (don't clear on
# prior success)
self.assertEqual(ti.xcom_pull(task_ids='test_xcom', key=key), value)
def test_xcom_pull_different_execution_date(self):
"""
tests xcom fetch behavior with different execution dates, using
both xcom_pull with "include_prior_dates" and without
"""
key = 'xcom_key'
value = 'xcom_value'
dag = models.DAG(dag_id='test_xcom', schedule_interval='@monthly')
task = DummyOperator(
task_id='test_xcom',
dag=dag,
pool='test_xcom',
owner='airflow',
start_date=datetime.datetime(2016, 6, 2, 0, 0, 0))
exec_date = datetime.datetime.now()
ti = TI(
task=task, execution_date=exec_date)
ti.run(mark_success=True)
ti.xcom_push(key=key, value=value)
self.assertEqual(ti.xcom_pull(task_ids='test_xcom', key=key), value)
ti.run()
exec_date += datetime.timedelta(days=1)
ti = TI(
task=task, execution_date=exec_date)
ti.run()
# We have set a new execution date (and did not pass in
# 'include_prior_dates'which means this task should now have a cleared
# xcom value
self.assertEqual(ti.xcom_pull(task_ids='test_xcom', key=key), None)
# We *should* get a value using 'include_prior_dates'
self.assertEqual(ti.xcom_pull(task_ids='test_xcom',
key=key,
include_prior_dates=True),
value)