Skip to content
forked from apache/airflow

AirFlow is a system to programmatically author, schedule and monitor data pipelines.

License

Notifications You must be signed in to change notification settings

wndhydrnt/airflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Airflow

PyPI version Build Status Coverage Status Documentation Join the chat at https://gitter.im/apache/incubator-airflow

NOTE: The transition from 1.8.0 (or before) to 1.8.1 (or after) requires uninstalling Airflow before installing the new version. The package name was changed from airflow to apache-airflow as of version 1.8.1.

Airflow is a platform to programmatically author, schedule, and monitor workflows.

When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative.

Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.

Getting started

Please visit the Airflow Platform documentation for help with installing Airflow, getting a quick start, or a more complete tutorial.

For further information, please visit the Airflow Wiki.

Beyond the Horizon

Airflow is not a data streaming solution. Tasks do not move data from one to the other (though tasks can exchange metadata!). Airflow is not in the Spark Streaming or Storm space, it is more comparable to Oozie or Azkaban.

Workflows are expected to be mostly static or slowly changing. You can think of the structure of the tasks in your workflow as slightly more dynamic than a database structure would be. Airflow workflows are expected to look similar from a run to the next, this allows for clarity around unit of work and continuity.

Principles

  • Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.
  • Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
  • Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built into the core of Airflow using the powerful Jinja templating engine.
  • Scalable: Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.

User Interface

  • DAGs: Overview of all DAGs in your environment.

  • Tree View: Tree representation of a DAG that spans across time.

  • Graph View: Visualization of a DAG's dependencies and their current status for a specific run.

  • Task Duration: Total time spent on different tasks over time.

  • Gantt View: Duration and overlap of a DAG.

  • Code View: Quick way to view source code of a DAG.

Who uses Airflow?

As the Airflow community grows, we'd like to keep track of who is using the platform. Please send a PR with your company name and @githubhandle if you may.

Committers:

Currently officially using Airflow:

  1. Airbnb [@mistercrunch, @artwr]
  2. Agari [@r39132]
  3. allegro.pl [@kretes]
  4. AltX [@pedromduarte]
  5. Apigee [@btallman]
  6. ARGO Labs [California Data Collaborative]
  7. Astronomer [@schnie, @andscoop, @tedmiston, @benjamingregory]
  8. Auth0 [@sicarul]
  9. Away [@trunsky]
  10. BalanceHero [@swalloow]
  11. Azri Solutions [@userimack]
  12. BandwidthX [@dineshdsharma]
  13. Bellhops
  14. BlaBlaCar [@puckel & @wmorin]
  15. Bloc [@dpaola2]
  16. BlueApron [@jasonjho & @matthewdavidhauser]
  17. Blue Yonder [@blue-yonder]
  18. California Data Collaborative powered by ARGO Labs
  19. Carbonite [@ajbosco]
  20. Celect [@superdosh & @chadcelect]
  21. Change.org [@change, @vijaykramesh]
  22. Checkr [@tongboh]
  23. Children's Hospital of Philadelphia Division of Genomic Diagnostics [@genomics-geek]
  24. City of San Diego [@MrMaksimize, @andrell81 & @arnaudvedy]
  25. Clairvoyant @shekharv
  26. Clover Health [@gwax & @vansivallab]
  27. Chartboost [@cgelman & @dclubb]
  28. ContaAzul [@bern4rdelli, @renanleme & @sabino]
  29. Cotap [@maraca & @richardchew]
  30. CreditCards.com[@vmAggies & @jay-wallaby]
  31. Credit Karma [@preete-dixit-ck & @harish-gaggar-ck & @greg-finley-ck]
  32. Creditas [@dcassiano]
  33. DataFox [@sudowork]
  34. Data Reply [@kaxil]
  35. Digital First Media [@duffn & @mschmo & @seanmuth]
  36. Drivy [@AntoineAugusti]
  37. Easy Taxi [@caique-lima & @WesleyBatista]
  38. eRevalue [@hamedhsn]
  39. evo.company [@orhideous]
  40. FreshBooks [@DinoCow]
  41. Fundera [@andyxhadji]
  42. GameWisp [@tjbiii & @theryanwalls]
  43. Gentner Lab [@neuromusic]
  44. Glassdoor [@syvineckruyk]
  45. Global Fashion Group [@GFG]
  46. GovTech GDS [@chrissng & @datagovsg]
  47. Grand Rounds [@richddr, @timz1290, @wenever, & @runongirlrunon]
  48. Groupalia [@jesusfcr]
  49. Gusto [@frankhsu]
  50. Handshake [@mhickman]
  51. Handy [@marcintustin / @mtustin-handy]
  52. Healthjump [@miscbits]
  53. HBO[@yiwang]
  54. HelloFresh [@tammymendt & @davidsbatista & @iuriinedostup]
  55. Holimetrix [@thibault-ketterer]
  56. Hootsuite
  57. Hostnfly [@CyrilLeMat & @pierrechopin & @alexisrosuel]
  58. HotelQuickly [@zinuzoid]
  59. IFTTT [@apurvajoshi]
  60. iHeartRadio[@yiwang]
  61. imgix [@dclubb]
  62. ING
  63. Intercom [@fox & @paulvic]
  64. Jampp
  65. JobTeaser [@stefani75 & @knil-sama]
  66. Karmic [@hyw]
  67. Kiwi.com [@underyx]
  68. Kogan.com [@geeknam]
  69. Lemann Foundation [@fernandosjp]
  70. LendUp [@lendup]
  71. LetsBonus [@jesusfcr & @OpringaoDoTurno]
  72. liligo [@tromika]
  73. LingoChamp [@haitaoyao]
  74. Lucid [@jbrownlucid & @kkourtchikov]
  75. Lumos Labs [@rfroetscher & @zzztimbo]
  76. Lyft[@SaurabhBajaj]
  77. Madrone [@mbreining & @scotthb]
  78. Markovian [@al-xv, @skogsbaeck, @waltherg]
  79. Mercadoni [@demorenoc]
  80. Mercari [@yu-iskw]
  81. MiNODES [@dice89, @diazcelsa]
  82. MFG Labs
  83. mytaxi [@mytaxi]
  84. Nerdwallet
  85. New Relic [@marcweil]
  86. Newzoo [@newzoo-nexus]
  87. Nextdoor [@SivaPandeti, @zshapiro & @jthomas123]
  88. OfferUp
  89. OneFineStay [@slangwald]
  90. Open Knowledge International @vitorbaptista
  91. Overstock [@mhousley & @mct0006]
  92. Pandora Media [@Acehaidrey]
  93. PAYMILL [@paymill & @matthiashuschle]
  94. PayPal [@r39132 & @jhsenjaliya]
  95. Pernod-Ricard [@romain-nio
  96. Playbuzz [@clintonboys & @dbn]
  97. Plaid [@plaid, @AustinBGibbons & @jeeyoungk]
  98. Postmates [@syeoryn]
  99. Pronto Tools [@zkan & @mesodiar]
  100. Qubole [@msumit]
  101. Quizlet [@quizlet]
  102. Quora
  103. Robinhood [@vineet-rh]
  104. Scaleway [@kdeldycke]
  105. Sense360 [@kamilmroczek]
  106. Shopkick [@shopkick]
  107. Sidecar [@getsidecar]
  108. SimilarWeb [@similarweb]
  109. SmartNews [@takus]
  110. SocialCops [@vinayak-mehta & @sharky93]
  111. Spotify [@znichols]
  112. Stackspace
  113. Stripe [@jbalogh]
  114. Tails.com [@alanmcruickshank]
  115. Thinking Machines [@marksteve]
  116. Thumbtack [@natekupp]
  117. Tictail
  118. T2 Systems [@unclaimedpants]
  119. Ubisoft [@Walkoss]
  120. United Airlines [@ilopezfr]
  121. Upsight [@dhuang]
  122. Vente-Exclusive.com [@alexvanboxel]
  123. Vnomics [@lpalum]
  124. WePay [@criccomini & @mtagle]
  125. WeTransfer [@jochem]
  126. Whistle Labs [@ananya77041]
  127. WiseBanyan
  128. Wooga
  129. Xoom [@gepser & @omarvides]
  130. Yahoo!
  131. Zapier [@drknexus & @statwonk]
  132. Zendesk
  133. Zenly [@cerisier & @jbdalido]
  134. Zymergen
  135. 99 [@fbenevides, @gustavoamigo & @mmmaia]

Links

About

AirFlow is a system to programmatically author, schedule and monitor data pipelines.

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 59.9%
  • JavaScript 33.2%
  • HTML 4.5%
  • CSS 1.8%
  • Other 0.6%