pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++ code. Its goals and syntax are similar to the excellent Boost.Python library by David Abrahams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time introspection.
The main issue with Boost.Python—and the reason for creating such a similar project—is Boost. Boost is an enormously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become an excessively large and unnecessary dependency. Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn't relevant for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This compact implementation was possible thanks to some of the new C++11 language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this library has grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common situations.
The following core C++ features can be mapped to Python
- Functions accepting and returning custom data structures per value, reference, or pointer
- Instance methods and static methods
- Overloaded functions
- Instance attributes and static attributes
- Arbitrary exception types
- Enumerations
- Callbacks
- Iterators and ranges
- Custom operators
- Single and multiple inheritance
- STL data structures
- Smart pointers with reference counting like
std::shared_ptr
- Internal references with correct reference counting
- C++ classes with virtual (and pure virtual) methods can be extended in Python
In addition to the core functionality, pybind11 provides some extra goodies:
- Python 2.7, 3.x, and PyPy (PyPy2.7 >= 5.7) are supported with an implementation-agnostic interface.
- It is possible to bind C++11 lambda functions with captured variables. The lambda capture data is stored inside the resulting Python function object.
- pybind11 uses C++11 move constructors and move assignment operators whenever possible to efficiently transfer custom data types.
- It's easy to expose the internal storage of custom data types through Pythons' buffer protocols. This is handy e.g. for fast conversion between C++ matrix classes like Eigen and NumPy without expensive copy operations.
- pybind11 can automatically vectorize functions so that they are transparently applied to all entries of one or more NumPy array arguments.
- Python's slice-based access and assignment operations can be supported with just a few lines of code.
- Everything is contained in just a few header files; there is no need to link against any additional libraries.
- Binaries are generally smaller by a factor of at least 2 compared to equivalent bindings generated by Boost.Python. A recent pybind11 conversion of PyRosetta, an enormous Boost.Python binding project, reported a binary size reduction of 5.4x and compile time reduction by 5.8x.
- Function signatures are precomputed at compile time (using
constexpr
), leading to smaller binaries. - With little extra effort, C++ types can be pickled and unpickled similar to regular Python objects.
- Clang/LLVM (any non-ancient version with C++11 support)
- GCC 4.8 or newer
- Microsoft Visual Studio 2015 or newer
- Intel C++ compiler v17 or newer (v16 with pybind11 v2.0 and v15 with pybind11 v2.0 and a workaround )