-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathst_cnn.py
222 lines (184 loc) · 7.04 KB
/
st_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import os
import scipy.io
import csv
import numpy as np
from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import audioFeatureExtraction
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from sklearn.model_selection import train_test_split
import keras.utils
import keras.backend as K
import tensorflow as tf
import matplotlib.pyplot as plt
from keras.callbacks import ModelCheckpoint, Callback
from keras.utils import plot_model
from keras import initializers, layers
window_size = 200
label_path = 'RecordsGroundTruth.csv'
audio_dir = 'ringtone removed labeled wav/'
def short_term_features(in_path, window_size):
# this function calculates short-term features of one audio file
#
# in_path: input audio file address
# window_size: length of the feature matrix
[Fs, x] = audioBasicIO.readAudioFile(in_path)
F = audioFeatureExtraction.stFeatureExtraction(x, Fs, 1.0*Fs, 1.0*Fs);
st = F.transpose()
[r, c] = st.shape
n = r/window_size
re = r%window_size
a = 0
if n != 0:
for i in range(n):
if a == 0:
a = 1
f = np.array([st[0:window_size:1,:]])
else:
start = window_size*i
g = st[start:start+window_size:1,:]
h = np.array([g])
f = np.vstack((f,h))
remain = st[(n*window_size):(n*window_size+re):1,:]
pudding = np.zeros(((window_size-re),c))
m = np.vstack((remain,pudding))
f = np.vstack((f,np.array([m])))
else:
remain = st[(n*window_size):(n*window_size+re):1,:]
pudding = np.zeros(((window_size-re),c))
m = np.vstack((remain,pudding))
f = np.array([m])
return f
def normalize(feature_matrix):
return (feature_matrix-feature_matrix.min(0)) * 1.0 / (feature_matrix.ptp(0))
def one_hot_matrix(vector):
one_hot = np.zeros((vector.size, max(max(vector))+1))
one_hot[np.arange(vector.size), vector.flatten()] = 1
return one_hot
def get_labels(path):
csvfile = open(path, 'rb')
reader = csv.reader(csvfile)
#skip headers
next(reader, None)
rows = []
for row in reader:
rows.append(row)
return np.array(rows)
def find_label(filename, label_matrix):
for row in label_matrix:
if row[0] == filename:
return row[1]
def data_generator(label_path,audio_dir,window_size):
# this function generates short-term feature matrixes
#
# label_path: ground-truth file address
# audio_dir: directory that stores all audio files
# window_size: length of the feature matrix
label_matrix = get_labels(label_path)
a = 0
for audio in os.listdir(audio_dir):
if audio != '.DS_Store':
filename = audio.split('.')[0]
if '00T6000005HiT1f' in filename:
filename = '00T6000005HiT1f'
label = find_label(filename, label_matrix)
if a == 0:
a = 1
features = short_term_features(audio_dir+audio,window_size)
#features = normalize(features)
n = len(features)
if label == '1':
labels = np.ones(n)
elif label == '0':
labels = np.zeros(n)
else:
f = short_term_features(audio_dir+audio,window_size)
#f = normalize(f)
features = np.vstack((features,f))
n = len(f)
if label == '1':
l = np.ones(n)
labels = np.hstack((labels,l))
elif label == '0':
l = np.zeros(n)
labels = np.hstack((labels,l))
features.dump('cnn_dataset_1_200.dat')
labels.dump('cnn_labels_1_200.dat')
print len(features),len(labels)
return features, labels
def train_model(dataset, labels):
# this function trains a deep neural network by feeding feature matrixes
#
# dataset: training data address
# labels: training label address
X_train, X_test, y_train, y_test = train_test_split(dataset, labels, test_size=0.1, random_state = 227)
n,h,w = dataset.shape
input_shape = ( h, w, 1)
X_train = X_train.reshape(X_train.shape[0], h, w, 1)
X_test = X_test.reshape(X_test.shape[0], h, w, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
Y_train = keras.utils.to_categorical(y_train, 2)
Y_test = keras.utils.to_categorical(y_test, 2)
model = Sequential()
model.add(Conv2D(32, (10, 1), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(5, 1)))
model.add(Conv2D(64, (8, 1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(5, 1)))
model.add(Conv2D(128, (5, 1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
#model.add(Dropout(0.25))
# model.add(Conv2D(128, (5, 1)))
# model.add(Activation('relu'))
# model.add(MaxPooling2D(pool_size=(2, 1)))
# model.add(Conv2D(32, (5, 1)))
# model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(2, 1)))
# model.add(Dropout(0.25))
# model.add(Conv2D(128, (2, 1)))
# model.add(Activation('relu'))
# model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Dropout(0.25))
# model.add(Flatten())
# model.add(Dense(256))
# model.add(Activation('relu'))
# model.add(Dropout(0.5))
# model.add(Dense(1))
# model.add(Activation('sigmoid'))
model.add(CapsuleLayer(num_capsule=2, dim_capsule=16, num_routing=1))
model.add(Length())
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics={'capsnet': 'accuracy'})
plot_model(model, to_file='model.png', show_shapes='True')
#checkpointer = ModelCheckpoint(filepath='weights/smallest_loss_weights.hdf5', monitor='loss', verbose=2, save_best_only=True)
history = model.fit(X_train, y_train, batch_size=50, nb_epoch=30, verbose=0,
validation_data=(X_test, y_test)) #callbacks=[checkpointer])
#score = model.evaluate(X_test, y_test, verbose=1)
#print score
# summarize history for accuracy
plt.subplot(1,2,1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
# summarize history for loss
plt.subplot(1,2,2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
dataset, labels = data_generator(label_path,audio_dir,window_size)
dataset = np.load('cnn_dataset_0.05.dat')
labels = np.load('cnn_labels_0.05.dat')
train_model(dataset, labels)