-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathheatmap.py
173 lines (152 loc) · 7.45 KB
/
heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
from model import three_view_net
from utils import load_network
import yaml
import argparse
import torch
import torch.nn as nn
import torchvision
from torchvision import datasets, models, transforms
from PIL import Image
import imgaug.augmenters as iaa
import cv2
os.environ["CUDA_VISIBLE_DEVICES"] = '2'
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--data_dir',default='/home/wangtyu/datasets/University-Release/test',type=str, help='./test_data')
parser.add_argument('--name', default='three_view_long_share_d0.75_256_s1_google_lr0.005_bn_v21.9_210ep_weather', type=str, help='save model path')
parser.add_argument('--batchsize', default=1, type=int, help='batchsize')
opt = parser.parse_args()
config_path = os.path.join('./model',opt.name,'opts.yaml')
with open(config_path, 'r') as stream:
config = yaml.load(stream)
opt.fp16 = config['fp16']
opt.stride = config['stride']
opt.block = config['block']
opt.views = config['views']
opt.norm = config['norm']
opt.adain = config['adain']
if 'h' in config:
opt.h = config['h']
opt.w = config['w']
if 'nclasses' in config: # tp compatible with old config files
opt.nclasses = config['nclasses']
else:
opt.nclasses = 751
def heatmap2d(img, arr):
# fig = plt.figure()
# ax0 = fig.add_subplot(121, title="Image")
# ax1 = fig.add_subplot(122, title="Heatmap")
# fig, ax = plt.subplots()
# ax[0].imshow(Image.open(img))
# plt.figure()
heatmap = plt.imshow(arr, cmap='viridis')
plt.axis('off')
# fig.colorbar(heatmap, fraction=0.046, pad=0.04)
#plt.show()
# plt.gca().xaxis.set_major_locator(plt.NullLocator())
# plt.gca().yaxis.set_major_locator(plt.NullLocator())
# plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
# plt.margins(0, 0)
plt.savefig('bn_heatmap_normal', bbox_inches='tight', pad_inches=0)
# data_transforms = transforms.Compose([
# transforms.Resize((opt.h, opt.w), interpolation=3),
# transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ])
def assign_adain_params(adain_params_w, adain_params_b, model, dim=32, init_w=None, init_b=None):
# assign the adain_params to the AdaIN layers in model
# dim = self.output_dim
for m in model.modules():
if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
mean = adain_params_b[:, :dim].contiguous()
std = adain_params_w[:, :dim].contiguous()
m.bias = mean.view(-1)
m.weight = std.view(-1)
if adain_params_w.size(1) > dim: # Pop the parameters
adain_params_b = adain_params_b[:, dim:]
adain_params_w = adain_params_w[:, dim:]
iaa_transform = iaa.Sequential(
[
# iaa.CloudLayer(intensity_mean=225, intensity_freq_exponent=-2, intensity_coarse_scale=2, alpha_min=1.0,
# alpha_multiplier=0.9, alpha_size_px_max=10, alpha_freq_exponent=-2, sparsity=0.9,
# density_multiplier=0.5, seed=35),
# iaa.Rain(drop_size=(0.05, 0.1), speed=(0.04, 0.06), seed=38),
# iaa.Rain(drop_size=(0.05, 0.1), speed=(0.04, 0.06), seed=35),
# iaa.Rain(drop_size=(0.1, 0.2), speed=(0.04, 0.06), seed=73),
# iaa.Rain(drop_size=(0.1, 0.2), speed=(0.04, 0.06), seed=93),
# iaa.Rain(drop_size=(0.05, 0.2), speed=(0.04, 0.06), seed=95),
# iaa.Snowflakes(flake_size=(0.5, 0.8), speed=(0.007, 0.03), seed=38),
# iaa.Snowflakes(flake_size=(0.5, 0.8), speed=(0.007, 0.03), seed=35),
# iaa.Snowflakes(flake_size=(0.6, 0.9), speed=(0.007, 0.03), seed=74),
# iaa.Snowflakes(flake_size=(0.6, 0.9), speed=(0.007, 0.03), seed=94),
# iaa.Snowflakes(flake_size=(0.5, 0.9), speed=(0.007, 0.03), seed=96),
# iaa.CloudLayer(intensity_mean=225, intensity_freq_exponent=-2, intensity_coarse_scale=2, alpha_min=1.0,
# alpha_multiplier=0.9, alpha_size_px_max=10, alpha_freq_exponent=-2, sparsity=0.9,
# density_multiplier=0.5, seed=35),
# iaa.Rain(drop_size=(0.05, 0.2), speed=(0.04, 0.06), seed=35),
# iaa.Rain(drop_size=(0.05, 0.2), speed=(0.04, 0.06), seed=36),
# iaa.CloudLayer(intensity_mean=225, intensity_freq_exponent=-2, intensity_coarse_scale=2, alpha_min=1.0,
# alpha_multiplier=0.9, alpha_size_px_max=10, alpha_freq_exponent=-2, sparsity=0.9,
# density_multiplier=0.5, seed=35),
# iaa.Snowflakes(flake_size=(0.5, 0.9), speed=(0.007, 0.03), seed=35),
# iaa.Snowflakes(flake_size=(0.5, 0.9), speed=(0.007, 0.03), seed=36),
# iaa.Snowflakes(flake_size=(0.5, 0.8), speed=(0.007, 0.03), seed=35),
# iaa.Rain(drop_size=(0.05, 0.1), speed=(0.04, 0.06), seed=35),
# iaa.Rain(drop_size=(0.1, 0.2), speed=(0.04, 0.06), seed=92),
# iaa.Rain(drop_size=(0.05, 0.2), speed=(0.04, 0.06), seed=91),
# iaa.Snowflakes(flake_size=(0.6, 0.9), speed=(0.007, 0.03), seed=74),
# iaa.BlendAlpha(0.5, foreground=iaa.Add(100), background=iaa.Multiply(0.2), seed=31),
# iaa.MultiplyAndAddToBrightness(mul=0.2, add=(-30, -15), seed=1991), # qianbao
# iaa.MultiplyAndAddToBrightness(mul=1.6, add=(0, 30), seed=1992), # guobao
# iaa.MotionBlur(15, seed=17),
iaa.Resize({"height": opt.h, "width": opt.w}, interpolation=3),
]
)
data_transforms_iaa = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# image_datasets = {x: datasets.ImageFolder( os.path.join(opt.data_dir,x) ,data_transforms) for x in ['satellite']}
# dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize,
# shuffle=False, num_workers=1) for x in ['satellite']}
# imgpath = image_datasets['satellite'].imgs
# print(imgpath)
# imgname = 'gallery_drone/0721/image-28.jpeg'
# imgname = 'query_satellite/0721/0721.jpg'
imgname = 'query_drone/0561/image-24.jpeg'
imgpath = os.path.join(opt.data_dir,imgname)
img = Image.open(imgpath)
# img = data_transforms(img)
img = np.array(img)
img = iaa_transform(image=img)
img = data_transforms_iaa(img)
img = torch.unsqueeze(img,0)
print(img.shape)
model, _, epoch = load_network(opt.name, opt)
# print(model)
model = model.eval().cuda()
# data = next(iter(dataloaders['satellite']))
# img, label = data
with torch.no_grad():
# dw1, db1, dw2, db2, dw3, db3, dout_w = model.pt_model(img.cuda())
# assign_adain_params(dw1[0] + model._w1[0], db1[0] + model._b1[0], model.model_3.model.layer1[0], 32)
# assign_adain_params(dw1[2] + model._w1[2], db1[2] + model._b1[2], model.model_3.model.layer1[2], 32)
x = model.model_3.model.conv1(img.cuda())
x = model.model_3.model.bn1(x)
x = model.model_3.model.relu(x)
x = model.model_3.model.maxpool(x)
x = model.model_3.model.layer1(x)
x = model.model_3.model.layer2(x)
x = model.model_3.model.layer3(x)
output = model.model_3.model.layer4(x)
print(output.shape)
heatmap = output.squeeze().sum(dim=0).cpu().numpy()
#test_array = np.arange(100 * 100).reshape(100, 100)
# Result is saved tas `heatmap.png`
heatmap = cv2.resize(heatmap, (512, 512))
print(heatmap.shape)
heatmap2d(imgpath,heatmap)