#sqlx
The sqlx API has been stable for a long time as I have attempted to learn from the way that it interacts with real code and taken in bug reports. There have been very minor breaking changes in the past, many of which would not have affected most code.
The API of database/sql is impressively succinct, something which is currently not mirrored by sqlx. While the goals were obviously to create extensions, a lot of noise has crept in as well. Much of the API bloat is due to the proliferation of functions which do not save programmers much time and energy.
In addition to this is the fact that several behavioral or design mistakes have crept into sqlx:
- the way that non-embedded structs are also used for field scanning opens us up to cycles and infinite loops and is odd behavior
- the global NameMapper function makes it difficult for code that is intended to be a library to rely on any particular behavior of sqlx.
- separating named bind/exec/query functions by map/struct was unnecessary type safety pandering; it buys so little and costs a lot of API noise.
- reflection helpers are exposed as part of the
sqlx
namespace but are essentially useless to anyone not building ORMs.
To address this, there will be a breaking API release coming up. This will likely break some existing code, but it should be the last major API change that is at least 99% backwards compatible.
It should be known that a release will be made for the "current" version of sqlx, to ease vendoring where it is desired.
The mnemonic error handling Exec family, Execl
, Execf
, Execv
, will all
be removed without replacement. Likewise, Selectf
and Selectv
are also
removed without replacement. These are 3 line functions and have little use
in real code. Execp
will be removed but its alias, MustExec
, remains.
BindMap
and BindStruct
are replaced with a single BindNamed
, which will
handle structs or maps. NamedExec
and NamedQuery
are renamed to QueryNamed
and ExecNamed
to fit in with the rest of the VerbNamed API (eg. PrepareNamed
,
BindNamed
). NamedExecMap
and NamedQueryMap
are removed as ExecNamed
and
QueryNamed
now support both structs and maps. The Binder
interface, not
used in any exported functions, will no longer be exported.
sqlx is a library which provides a set of extensions on go's standard
database/sql
library. The sqlx versions of sql.DB
, sql.TX
, sql.Stmt
,
et al. all leave the underlying interfaces untouched, so that their interfaces
are a superset on the standard ones. This makes it relatively painless to
integrate existing codebases using database/sql with sqlx.
Major additional concepts are:
- Marshal rows into structs (with embedded struct support), maps, and slices
- Named parameter support including prepared statements
Get
andSelect
to go quickly from query to struct/sliceLoadFile
for executing statements from a file
There is now some fairly comprehensive documentation for sqlx. You can also read the usage below for a quick sample on how sqlx works, or check out the API documentation on godoc.
go get github.com/jmoiron/sqlx
Row headers can be ambiguous (SELECT 1 AS a, 2 AS a
), and the result of
Columns()
can have duplicate names on queries like:
SELECT a.id, a.name, b.id, b.name FROM foos AS a JOIN foos AS b ON a.parent = b.id;
making a struct or map destination ambiguous. Use AS
in your queries
to give rows distinct names, rows.Scan
to scan them manually, or
SliceScan
to get a slice of results.
Below is an example which shows some common use cases for sqlx. Check sqlx_test.go for more usage.
package main
import (
_ "github.com/lib/pq"
"database/sql"
"github.com/jmoiron/sqlx"
"log"
)
var schema = `
CREATE TABLE person (
first_name text,
last_name text,
email text
);
CREATE TABLE place (
country text,
city text NULL,
telcode integer
)`
type Person struct {
FirstName string `db:"first_name"`
LastName string `db:"last_name"`
Email string
}
type Place struct {
Country string
City sql.NullString
TelCode int
}
func main() {
// this connects & tries a simple 'SELECT 1', panics on error
// use sqlx.Open() for sql.Open() semantics
db, err := sqlx.Connect("postgres", "user=foo dbname=bar sslmode=disable")
if err != nil {
log.Fatalln(err)
}
// exec the schema or fail; multi-statement Exec behavior varies between
// database drivers; pq will exec them all, sqlite3 won't, ymmv
db.MustExec(schema)
tx := db.MustBegin()
tx.MustExec("INSERT INTO person (first_name, last_name, email) VALUES ($1, $2, $3)", "Jason", "Moiron", "[email protected]")
tx.MustExec("INSERT INTO person (first_name, last_name, email) VALUES ($1, $2, $3)", "John", "Doe", "[email protected]")
tx.MustExec("INSERT INTO place (country, city, telcode) VALUES ($1, $2, $3)", "United States", "New York", "1")
tx.MustExec("INSERT INTO place (country, telcode) VALUES ($1, $2)", "Hong Kong", "852")
tx.MustExec("INSERT INTO place (country, telcode) VALUES ($1, $2)", "Singapore", "65")
// Named queries can use structs, so if you have an existing struct (i.e. person := &Person{}) that you have populated, you can pass it in as &person
tx.NamedExec("INSERT INTO person (first_name, last_name, email) VALUES (:first_name, :last_name, :email)", &Person{"Jane", "Citizen", "[email protected]"})
tx.Commit()
// Query the database, storing results in a []Person (wrapped in []interface{})
people := []Person{}
db.Select(&people, "SELECT * FROM person ORDER BY first_name ASC")
jason, john := people[0], people[1]
fmt.Printf("%#v\n%#v", jason, john)
// Person{FirstName:"Jason", LastName:"Moiron", Email:"[email protected]"}
// Person{FirstName:"John", LastName:"Doe", Email:"[email protected]"}
// You can also get a single result, a la QueryRow
jason = Person{}
err = db.Get(&jason, "SELECT * FROM person WHERE first_name=$1", "Jason")
fmt.Printf("%#v\n", jason)
// Person{FirstName:"Jason", LastName:"Moiron", Email:"[email protected]"}
// if you have null fields and use SELECT *, you must use sql.Null* in your struct
places := []Place{}
err := db.Select(&places, "SELECT * FROM place ORDER BY telcode ASC")
if err != nil {
fmt.Printf(err)
return
}
usa, singsing, honkers = places[0], places[1], places[2]
fmt.Printf("%#v\n%#v\n%#v\n", usa, singsing, honkers)
// Place{Country:"United States", City:sql.NullString{String:"New York", Valid:true}, TelCode:1}
// Place{Country:"Singapore", City:sql.NullString{String:"", Valid:false}, TelCode:65}
// Place{Country:"Hong Kong", City:sql.NullString{String:"", Valid:false}, TelCode:852}
// Loop through rows using only one struct
place := Place{}
rows, err := db.Queryx("SELECT * FROM place")
for rows.Next() {
err := rows.StructScan(&place)
if err != nil {
log.Fataln(err)
}
fmt.Printf("%#v\n", place)
}
// Place{Country:"United States", City:sql.NullString{String:"New York", Valid:true}, TelCode:1}
// Place{Country:"Hong Kong", City:sql.NullString{String:"", Valid:false}, TelCode:852}
// Place{Country:"Singapore", City:sql.NullString{String:"", Valid:false}, TelCode:65}
// Named queries, using `:name` as the bindvar. Automatic bindvar support
// which takes into account the dbtype based on the driverName on sqlx.Open/Connect
_, err = db.NamedExec(`INSERT INTO person (first_name,last_name,email) VALUES (:first,:last,:email)`,
map[string]interface{}{
"first": "Bin",
"last": "Smuth",
"email": "[email protected]",
})
// Selects Mr. Smith from the database
rows, err := db.NamedQuery(`SELECT * FROM person WHERE first_name=:fn`, map[string]interface{}{"fn": "Bin"})
// Named queries can also use structs. Their bind names follow the same rules
// as the name -> db mapping, so struct fields are lowercased and the `db` tag
// is taken into consideration.
rows, err := db.NamedQuery(`SELECT * FROM person WHERE first_name=:first_name`, jason)
}
Structs which do not implement the sql.Scanner interface will be inspected and their fields used as possible targets for a scan. This includes embedded and non-embedded structs.
Go makes 'ambiguous selectors' a compile time error,
but does not make structs with possible ambiguous selectors errors. Sqlx will decide
which field to use on a struct based on a breadth first search of the struct and any
structs it contains or embeds, as specified by the order of the fields as accessible
by reflect
, which generally means in source-order.
By default, scanning into structs requires the structs to have fields for all of the columns in the query. This was done for a few reasons:
- A mistake in naming during development could lead you to believe that data is being written to a field when actually it can't be found and it is being dropped
- This behavior mirrors the behavior of the Go compiler with respect to unused variables
- Selecting more data than you need is wasteful (more data on the wire, more time marshalling, etc)
Unlike Marshallers in the stdlib, the programmer scanning an sql result into a struct will generally have a full understanding of what the underlying data model is and full control over the SQL statement.
Despite this, there are use cases where it's convenient to be able to ignore unknown
columns. In most of these cases, you might be better off with ScanSlice
, but where
you want to still use structs, there is now the Unsafe
method. Its usage is most
simply shown in an example:
db, err := sqlx.Connect("postgres", "user=foo dbname=bar sslmode=disable")
if err != nil {
log.Fatal(err)
}
type Person {
Name string
}
var p Person
// This fails, because there is no destination for location in Person
err = db.Get(&p, "SELECT name, location FROM person LIMIT 1")
udb := db.Unsafe()
// This succeeds and just sets `Name` in the p struct
err = udb.Get(&p, "SELECT name, location FROM person LIMIT 1")
The Unsafe
method is implemented on Tx
, DB
, and Stmt
. When you use an unsafe
Tx
or DB
to create a new Tx
or Stmt
, those inherit its lack of safety.