forked from vfceball/RC-FIAP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDesign_ACI_318S_19_IFM.py
734 lines (668 loc) · 28.8 KB
/
Design_ACI_318S_19_IFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
global Loc_span, Loc_heigth, ListNodes, Elements, DataBeamDesing, DataColDesing, WDL, WLL, WDLS, Wtotal, \
cover, num_elems, Beta1B, Beta1C, fcB, fcC, ListNodesDrift, ListNodesBasal, Ta, num_beams, num_cols
# Function: Reads Beams design data from table that allows the user to modify the default design from TAB2 of GU
def data_beams_table(self):
self.registros_beams = []
for DB in DataBeamDesing:
b = DB.b / cm
h = DB.h / cm
L_As_top = DB.Ast1 / cm ** 2
L_As_bot = DB.Asb1 / cm ** 2
R_As_top = DB.Ast2 / cm ** 2
R_As_bot = DB.Asb2 / cm ** 2
L_Leg_n = DB.ns1
R_Leg_n = DB.ns2
L_Sstirrup = DB.ss1 / cm
R_Sstirrup = DB.ss2 / cm
registro = RegistroBeams(self.ui.tbl_data_design_beams, DB.EleTag, b, h, L_As_top, L_As_bot, L_Leg_n,
L_Sstirrup, R_As_top, R_As_bot, R_Leg_n, R_Sstirrup)
self.registros_beams.append(registro)
# Function: Reads Columns design data from table that allows the user to modify the default design from TAB2 of GUI.
def data_columns_table(self):
self.registros_cols = []
for DC in DataColDesing:
b = DC.b / cm
h = DC.h / cm
roCol = DC.ro
db = DC.db / mm
nbH = DC.nbH
nbB = DC.nbB
nsH = DC.nsH
nsB = DC.nsB
sst = DC.sst / cm
registro = RegistroColumns(self.ui.tbl_data_design_columns, DC.EleTag, b, h, roCol, db, nbH, nbB, nsH, nsB,
sst)
self.registros_cols.append(registro)
def beta1(fc):
if fc <= 28 * MPa:
Beta1 = 0.85
else:
Beta1 = max([0.85 - 0.05 * (fc - 28.) / 7., 0.65])
return Beta1
# Design load combinations
def Combo_ACI(DL, LL, E):
U1 = 1.2 * DL + 1.6 * LL
U2 = 1.2 * DL + 1.0 * LL + 1.0 * E
U3 = 1.2 * DL + 1.0 * LL - 1.0 * E
U4 = 0.9 * DL + 1.0 * E
U5 = 0.9 * DL - 1.0 * E
return U1, U2, U3, U4, U5
# Flexural beams design
def AsBeam(Mu, EleTag, cover, ro_min_b, ro_max_b, dst, fy, BBeam, HBeam):
b, h = BBeam, HBeam
Mu = abs(Mu)
db_v = np.array([4, 5, 6, 7, 8, 10])
for ndb in db_v:
db = ndb / 8. * inch
d = h - cover - dst - 0.5 * db
if Mu == 0.0:
ro_req = ro_min_b
else:
ro_req = 0.85 * fcB / fy * (1. - sqrt(1. - 2. * (Mu / 0.9 / b / d ** 2) / 0.85 / fcB))
if ro_req < ro_min_b:
ro_req = ro_min_b
As_req = ro_req * b * d
Ab = pi * db ** 2 / 4.
nb = max(2., ceil(As_req / Ab))
As_con = nb * Ab
slb = (b - 2 * cover - 2 * dst - nb * db) / (nb - 1.) # free clear bars
if slb >= max(1. * inch, db):
break
if ro_req > ro_max_b:
print("Steel percentage greater than the maximum in Beam " + str(EleTag))
if slb < min(1. * inch, db):
print("Bar separation is not ok in Beam " + str(EleTag))
a = fy * As_con / 0.85 / fcB / b
Mn = fy * As_con * (d - a / 2.)
apr = 1.25 * fy * As_con / 0.85 / fcB / b
Mpr = 1.25 * fy * As_con * (d - apr / 2.)
return As_con, d, Mn, db, Mpr
# Shear beams design
def AvBeam(Vu, db, d, EleTag, fy, dst, Ast, BBeam):
Vc = 0.17 * sqrt(fcB / 1000.) * MPa * BBeam * d
Vs = (Vu - 0.75 * Vc) / 0.75
if Vs > 4. * Vc:
print("reshape by shear in Beam " + str(EleTag))
se_1 = min(d / 4., 8. * db, 24. * dst, 300. * mm)
nr_v = np.array([2, 3, 4]) # vector de numero de ramas
if Vs <= 0.:
se = se_1
nra = 2.
else:
for nra in nr_v:
Ave = Ast * nra # area transversal del estribo
se_2 = Ave * fy * d / Vs
se = min(se_1, se_2)
if se >= 60. * mm:
break
se = floor(se / cm) * cm
if se < 60. * mm:
print("Stirrup spacing is less than 6 cm in beam " + str(EleTag))
return nra, se
# Colmuns P-M design
def AsColumn(b, h, EleTag, cover, dst, fy, Beta1C, Pu_v, Mu_v, Sum_Mn_B, FactorColBeamStr, ncolsn, Nu_min):
ro_min = 0.01
ro_max = 0.08
npts = 20
ncom = 10
ecu = 0.003
Es = 200. * GPa
verif = False
nbB = ceil(b * 10) # bars numbers along B
nbH = ceil(h * 10) # bars numbers along H
D_c = 1.1 * h / npts
nbH_v = np.array([nbH - 1, nbH, nbH + 1])
nbB_v = np.array([nbB - 1, nbB, nbB + 1])
db_v = np.array([4, 5, 6, 7, 8, 9, 10, 11, 14, 18]) # vector bar diameters
while verif == False:
for ndb in db_v:
db = ndb / 8. * inch
Ab = pi * db ** 2. / 4.
dp = cover + dst + 0.5 * db
d = h - dp
for nbH in nbH_v:
for nbB in nbB_v:
nbT = 2. * (nbB + nbH - 2.) # numero total de barras
Ast = nbT * Ab
ro = Ast / b / h
As = np.hstack([nbB * Ab, np.ones(nbH - 2) * 2 * Ab, nbB * Ab])
dist = np.linspace(dp, h - dp, nbH)
if ro >= ro_min:
Pn_max = 0.80 * (0.85 * fcC * (b * h - Ast) + fy * Ast)
Tn_max = -fy * Ast
c = np.linspace(1.1 * h / npts, 1.1 * h, npts)
a = Beta1C * c
Pconc = 0.85 * fcC * a * b
Mconc = Pconc * (h - a) / 2.
et = ecu * (d - c) / c
fiv = np.copy(et)
fiv = np.where(fiv >= 0.005, 0.9, fiv)
fiv = np.where(fiv <= 0.002, 0.65, fiv)
fiv = np.where((fiv > 0.002) & (fiv < 0.005), (0.65 + 0.25 * (fiv - 0.002) / 0.003),
fiv)
c = c[:, np.newaxis]
es = ecu * (c - dist) / c
fs = Es * es
fs = np.where(fs > fy, fy, fs)
fs = np.where(fs < -fy, -fy, fs)
Pacer = np.sum(fs * As, axis=1)
Macer = np.sum(fs * As * (h / 2. - dist), axis=1)
Pn = np.hstack(
[Tn_max, np.where(Pconc + Pacer > Pn_max, Pn_max, Pconc + Pacer), Pn_max])
Mn = np.hstack([0, Mconc + Macer, 0])
fiv = np.hstack([0.9, fiv, 0.65])
fiPn = fiv * Pn
fiMn = fiv * Mn
if np.all((Pu_v >= min(fiPn)) & (Pu_v <= max(fiPn))):
Mu_i = np.interp(Pu_v, fiPn, fiMn)
Mn_i = np.interp(Pu_v, Pn, Mn)
Mns = np.interp(Nu_min, Pn, Mn)
Col_to_beam_str_ratio = ncolsn * Mns / Sum_Mn_B
if ncolsn == 1:
if np.all(Mu_i >= Mu_v) == True:
verif = True
break
else:
if np.all(Mu_i >= Mu_v) == True and Col_to_beam_str_ratio >= FactorColBeamStr:
verif = True
break
if verif == True:
break
if verif == True:
break
if ndb == db_v[-1] and ro > ro_max:
print('column ' + str(EleTag) + 'needs to be resized by reinforcement ratio')
break
return nbH, nbB, db, As, fiPn, fiMn, Mn_i, d, dist, ro, Mu_i, Col_to_beam_str_ratio
# Shear columns design
def AvColumn(EleTag, Vu, b, h, nbH, nbB, dst, Ast, Nu_min, db, fy):
fiv = 0.75
Ag = b * h
se_1 = min(8. * db, b / 2., h / 2., 200. * mm) # minimum spacing c.18.4.3.3 ACI-19
dp = cover + dst + db / 2
d = h - dp
neH = floor(nbH / 2) + 1
neB = floor(nbB / 2) + 1
Ash_H = neH * Ast
Ash_B = neB * Ast
Vc = (0.17 * sqrt(fcC * MPa) + Nu_min / 6 / Ag) * b * d
Vs = (Vu - fiv * Vc) / fiv
if Vs <= 1 / 3 * sqrt(fcC * MPa) * b * d:
se_1 = se_1
elif Vs >= 1 / 3 * sqrt(fcC * MPa) * b * d:
se_1 = min(se_1, h / 4)
if Vs > 0.66 * sqrt(fcC * MPa) * b * d:
print('Resize the column' + str(EleTag) + ' by shear ')
Ave = Ash_B # area transversal del estribo
if Vs <= 0.:
se = se_1
else:
se_2 = Ave * fy * d / Vs
se = min([se_1, se_2])
if se < 60. * mm:
print('Minimum spacing of stirrups is not met in column ' + str(EleTag))
Vn = Vc + Ave*fy*d/se
# print('Vn =', Vn)
return se, neB, neH, Vn
# Compression block parameters beta as function f'c
# Input geometric, materials and seismic design parameters from TAB1 of GUI
Lafg = float(self.ui.Lafg.text())
Lafs = float(self.ui.Lafs.text())
DL = float(self.ui.DL.text())
LL = float(self.ui.LL.text())
HColi = float(self.ui.HColi.text()) # Column inside Depth
BColi = float(self.ui.BColi.text()) # Column inside Width
HCole = float(self.ui.HCole.text()) # Column outside Depth
BCole = float(self.ui.BCole.text()) # Column outside Width
HBeam = float(self.ui.HBeam.text())
BBeam = float(self.ui.BBeam.text())
IFC = float(self.ui.InertiaColumnsFactor.text())
IFB = float(self.ui.InertiaBeamsFactor.text())
heigth_v = self.ui.heigth_v.text()
heigth_v = heigth_v.split(',')
heigth_v = np.array(heigth_v, dtype=float)
span_v = self.ui.span_v.text()
span_v = span_v.split(',')
span_v = np.array(span_v, dtype=float)
fy = float(self.ui.fy.text()) * MPa
fcB = float(self.ui.fcB.text()) * MPa
fcC = float(self.ui.fcC.text()) * MPa
R = float(self.ui.R.text())
Cd = float(self.ui.Cd.text())
Omo = float(self.ui.Omo.text())
Sds = float(self.ui.Sds.text())
Sd1 = float(self.ui.Sd1.text())
Tl = float(self.ui.Tl.text())
WDL = Lafg * DL
WDLS = Lafs * DL
WLL = Lafg * LL
plt.close('all')
op.wipe()
op.model('Basic', '-ndm', 2, '-ndf', 3)
# Nodes Creations
Loc_span = np.append(0, np.cumsum(span_v))
Loc_heigth = np.append(0, np.cumsum(heigth_v))
n_col_axes = len(Loc_span)
xn_v, yn_v = np.meshgrid(Loc_span, Loc_heigth)
xn_vf = np.ravel(xn_v)
yn_vf = np.ravel(yn_v)
num_nodes = len(Loc_span) * len(Loc_heigth)
ListNodes = np.empty([num_nodes, 3])
nodeTag = 0
for (xn, yn) in zip(xn_vf, yn_vf):
ListNodes[nodeTag, :] = [nodeTag, xn, yn]
op.node(nodeTag, xn, yn)
if yn == 0.:
op.fix(nodeTag, 1, 1, 1)
nodeTag += 1
for node in ListNodes:
if node[2] > 0. and node[1] == 0.:
MasterNode = node[0]
if node[2] > 0. and node[1] != 0.:
op.equalDOF(int(MasterNode), int(node[0]), 1)
ListNodesDrift = ListNodes[np.where(ListNodes[:, 1] == 0.)]
ListNodesBasal = ListNodes[np.where(ListNodes[:, 2] == 0.)]
MassType = "-lMass" # -lMass, -cMass
# Columns creation for elastic analysis
op.geomTransf('Linear', 1, '-jntOffset', 0, 0, 0, -HBeam / 2)
op.geomTransf('Linear', 2, '-jntOffset', 0, HBeam / 2, 0, -HBeam / 2)
AColi = BColi * HColi # cross-sectional area
ACole = BCole * HCole # cross-sectional area
EcC = 4700 * sqrt(fcC * MPa)
IzColi = 1. / 12. * BColi * HColi ** 3 # Column moment of inertia
IzCole = 1. / 12. * BCole * HCole ** 3 # Column moment of inertia
EleTag = 1
Elements = []
for Nod_ini in range(num_nodes):
if ListNodes[Nod_ini, 2] != Loc_heigth[-1]:
Nod_end = Nod_ini + n_col_axes
if ListNodes[Nod_ini, 2] == 0.:
gTr = 1
RZi = 0
RZe = HBeam / 2
LCol = ListNodes[Nod_end, 2] - ListNodes[Nod_ini, 2] - RZi - RZe
else:
gTr = 2
RZi = HBeam / 2
RZe = HBeam / 2
LCol = ListNodes[Nod_end, 2] - ListNodes[Nod_ini, 2] - RZi - RZe
if ListNodes[Nod_ini, 1] == 0. or ListNodes[Nod_ini, 1] == Loc_span[-1]:
BCol, HCol = BCole, HCole
ACol = ACole
IzCol = IFC * IzCole
else:
BCol, HCol = BColi, HColi
ACol = AColi
IzCol = IFC * IzColi
MassDens = ACol * GConc / g
Elements.append(BeamElasticElement(EleTag, Nod_ini, Nod_end, ACol, EcC, IzCol, LCol, BCol, HCol, gTr,
RZi, RZe))
op.element('elasticBeamColumn', EleTag, Nod_ini, Nod_end, ACol, EcC, IzCol, gTr, '-mass', MassDens,
MassType)
EleTag += 1
num_cols = EleTag
# Beams creation for elastic analysis
op.geomTransf('Linear', 3, '-jntOffset', HColi / 2., 0, -HColi / 2., 0)
op.geomTransf('Linear', 4, '-jntOffset', HCole / 2., 0, -HColi / 2., 0)
op.geomTransf('Linear', 5, '-jntOffset', HColi / 2., 0, -HCole / 2., 0)
ABeam = BBeam * HBeam
EcB = 4700 * sqrt(fcB * MPa)
IzBeam = IFB * BBeam * HBeam ** 3 / 12
MassDens = ABeam * GConc / g + WDLS / g
for Nod_ini in range(num_nodes):
if ListNodes[Nod_ini, 1] != Loc_span[-1] and ListNodes[Nod_ini, 2] != 0.:
Nod_end = Nod_ini + 1
if ListNodes[Nod_ini, 1] == 0.:
gTr = 4
RZi = HCole / 2.
RZe = HColi / 2.
LBeam = ListNodes[Nod_end, 1] - ListNodes[Nod_ini, 1] - RZi - RZe
elif ListNodes[Nod_ini, 1] == Loc_span[-2]:
gTr = 5
RZi = HColi / 2.
RZe = HCole / 2.
LBeam = ListNodes[Nod_end, 1] - ListNodes[Nod_ini, 1] - RZi - RZe
else:
gTr = 3
RZi = HColi / 2.
RZe = HColi / 2.
LBeam = ListNodes[Nod_end, 1] - ListNodes[Nod_ini, 1] - RZi - RZe
Elements.append(BeamElasticElement(EleTag, Nod_ini, Nod_end, ABeam, EcB, IzBeam, LBeam, BBeam, HBeam,
gTr, RZi, RZe))
op.element('elasticBeamColumn', EleTag, Nod_ini, Nod_end, ABeam, EcB, IzBeam, gTr,
'-mass', MassDens, MassType)
EleTag += 1
num_elems = EleTag
num_beams = num_elems - num_cols
# Create a Plain load pattern for gravity loading with a Linear TimeSeries
Pvig = ABeam * GConc
PColi = AColi * GConc
PCole = ACole * GConc
op.timeSeries('Linear', 1)
op.pattern('Plain', 1, 1)
for Element in Elements:
if ListNodes[Element.Nod_ini, 1] == ListNodes[Element.Nod_end, 1]:
if ListNodes[Element.Nod_ini, 1] == 0. or ListNodes[Element.Nod_ini, 1] == Loc_span[-1]:
PCol = PCole
else:
PCol = PColi
op.eleLoad('-ele', Element.EleTag, '-type', '-beamUniform', 0, -PCol)
if ListNodes[Element.Nod_ini, 2] == ListNodes[Element.Nod_end, 2]:
op.eleLoad('-ele', Element.EleTag, '-type', '-beamUniform', -Pvig - WDL)
op.system('UmfPack')
op.numberer('Plain')
op.constraints('Plain')
op.integrator('LoadControl', 1.0)
op.algorithm('Linear')
op.analysis('Static')
op.analyze(1)
ElemnsForceD = []
for Element in Elements:
Forces = op.eleForce(Element.EleTag)
Forces.insert(0, Element.EleTag)
ElemnsForceD.append(Forces)
ElemnsForceD = np.array(ElemnsForceD)
Wtotal = np.sum(ElemnsForceD[:len(Loc_span), 2]) * Lafs / Lafg #debo mirar esto
op.loadConst('-time', 0.0)
op.timeSeries('Linear', 2)
op.pattern('Plain', 2, 1)
for Element in Elements:
if ListNodes[Element.Nod_ini, 2] == ListNodes[Element.Nod_end, 2]:
op.eleLoad('-ele', Element.EleTag, '-type', '-beamUniform', -WLL)
op.analyze(1)
ElemnsForceDL = []
for Element in Elements:
Forces = op.eleForce(Element.EleTag)
Forces.insert(0, Element.EleTag)
ElemnsForceDL.append(Forces)
ElemnsForceDL = np.array(ElemnsForceDL)
# Create a Plain load pattern for seismic loading with a Linear TimeSeries (LLEF)
op.loadConst('-time', 0.0)
Htotal = Loc_heigth[-1]
Ct = 0.0466
x = 0.9
Ta = Ct * Htotal ** x
print('Ta =', Ta)
Ie = 1.0
Ts = Sd1 / Sds
if Ta <= Ts:
Sa = max(Sds * Ie / R, 0.044 * Sds * Ie, 0.01)
elif Ta <= Tl:
Sa = max(Sd1 * Ie / Ta / R, 0.044 * Sds * Ie, 0.01)
else:
Sa = max(Sd1 * Tl * Ie / (Ta ** 2) / R, 0.044 * Sds * Ie, 0.01)
if Ta <= 0.5:
k = 1.
elif Ta <= 2.5:
k = 0.75 + 0.5 * Ta
else:
k = 2.
sumH = np.sum(np.power(Loc_heigth, k))
op.timeSeries('Linear', 3)
op.pattern('Plain', 3, 1)
print('Wtotal =', Wtotal)
print('Sa =', Sa)
Fp = Sa * Wtotal * np.power(Loc_heigth, k) / sumH
print('FSis =', Fp)
for (fp, ind) in zip(Fp, range(len(Loc_heigth))):
op.load(int(ListNodesDrift[ind, 0]), fp, 0.0, 0.0)
Vbasal = Sa * Wtotal
op.analyze(1)
ElemnsForceDLE = []
for Element in Elements:
Forces = op.eleForce(Element.EleTag)
Forces.insert(0, Element.EleTag)
ElemnsForceDLE.append(Forces)
ElemnsForceDLE = np.array(ElemnsForceDLE)
np.set_printoptions(precision=6)
np.set_printoptions(suppress=True)
# Story drift caculations
DriftMax = 0.02
nodesDisp = []
Desp_x = []
Desp_y = []
Id_Node_Drift = ListNodesDrift[:, 0]
Id_Node_Drift = np.int64(Id_Node_Drift)
Id_Node_Drift = Id_Node_Drift.tolist()
Id_Node = ListNodes[:, 0]
Id_Node = np.int64(Id_Node)
Id_Node = Id_Node.tolist()
for nodo in Id_Node_Drift:
nodesDisp.append([nodo, op.nodeDisp(nodo, 1)])
nodesDisp = np.array(nodesDisp) * Cd
for nodo in Id_Node:
Desp_x.append([nodo, op.nodeDisp(nodo, 1)])
Desp_y.append([nodo, op.nodeDisp(nodo, 2)])
Desp_x = np.array(Desp_x) * Cd
Desp_y = np.array(Desp_y) * Cd
drift = nodesDisp[1:, 1] - nodesDisp[:-1, 1]
drift_p = np.divide(drift, np.array(heigth_v))
ver_drift = np.where(drift_p < DriftMax, 'ok', 'no ok')
Id_Floor = np.arange(1, len(Loc_heigth))
drift_table = pd.DataFrame({"1.Floor": Id_Floor, "2.Drift": drift_p * 100, "3.": ver_drift})
print(drift_table)
# self.ui.progressBarBeamDesign.setFormat('designing elements . . .')
# self.ui.progressBarBeamDesign.setStyleSheet('text-align: center')
# subprocess.call('ACI_318S_19_IFM.py', shell=True)
# os.system("ACI_318S_19_IFM.py")
# runpy.run_path(path_name='ACI_318S_19_IFM.py')
# exec(open("ACI_318S_19_IFM.py").read())
# subprocess.Popen(['python', 'ACI_318S_19_IFM.py'])
# import ACI_318S_19_IFM
self.ui.progressBarBeamDesign.show()
# Beams and columns design procedures
Beta1B = beta1(fcB)
cover = 4 * cm
dst = 3 / 8 * inch
Ast = pi * dst ** 2 / 4. # area de la barra del estribo
ro_max_b = 0.85 * Beta1B * fcB * 3. / fy / 8. # maximun steel percentage
ro_min_b = max(0.25 * sqrt(fcB / MPa) * MPa / fy, 1.4 * MPa / fy) # minimun steel percentage
DataBeamDesing = []
nprog = 0
nelems = num_elems - 1
for (Ele, EleForceD, EleForceDL, EleForceDLE) in zip(Elements, ElemnsForceD, ElemnsForceDL, ElemnsForceDLE):
self.ui.progressBarBeamDesign.setValue(int(100 * nprog / nelems))
nprog = nprog + 1
if ListNodes[Ele.Nod_ini, 2] == ListNodes[Ele.Nod_end, 2]:
VID = EleForceD[2]
VIL = EleForceDL[2] - VID
VIE = EleForceDLE[2] - VID - VIL
VED = abs(EleForceD[5])
VEL = abs(EleForceDL[5]) - VED
VEE = abs(EleForceDLE[5]) - VED - VEL
MID = EleForceD[3] - EleForceD[2] * Ele.RZi
MIL = EleForceDL[3] - EleForceDL[2] * Ele.RZi - MID
MIE = EleForceDLE[3] - EleForceDLE[2] * Ele.RZi - MID - MIL
MED = EleForceD[6] + EleForceD[5] * Ele.RZe
MEL = EleForceDL[6] + EleForceDL[5] * Ele.RZe - MED
MEE = EleForceDLE[6] + EleForceDLE[5] * Ele.RZe - MED - MEL
MED, MEL, MEE = -MED, -MEL, -MEE
# print('MID ', MID, 'MED', MED, 'MIL ', MIL, 'MEL', MEL, 'MIE ', MIE, 'MEE', MEE)
MI1, MI2, MI3, MI4, MI5 = Combo_ACI(MID, MIL, MIE)
MNU1 = max([MI1, MI2, MI3, MI4, MI5, 0.]) # Negative initial design node moment
MPU1 = min([MI1, MI2, MI3, MI4, MI5, abs(MNU1) / 3]) # Positive initial design node momentum
ME1, ME2, ME3, ME4, ME5 = Combo_ACI(MED, MEL, MEE)
MNU2 = max([ME1, ME2, ME3, ME4, ME5, 0.]) # Negative moment final design
MPU2 = min([ME1, ME2, ME3, ME4, ME5, abs(MNU2) / 3]) # Positive moment final design
Mmax = max([MNU1, -MPU1, MNU2, -MPU2])
MNU1 = max([MNU1, Mmax / 5])
MPU1 = min([MPU1, -Mmax / 5])
MNU2 = max([MNU2, Mmax / 5])
MPU2 = min([MPU2, -Mmax / 5])
# print('MNU1 ', MNU1, 'MPU1', MPU1, 'MNU2 ', MNU2, 'MPU2', MPU2)
Ast1, dt1, Mn_N1, db_t1, Mpr_N1 = AsBeam(MNU1, Ele.EleTag, cover, ro_min_b, ro_max_b, dst, fy, BBeam, HBeam)
Asb1, db1, Mn_P1, db_b1, Mpr_P1 = AsBeam(MPU1, Ele.EleTag, cover, ro_min_b, ro_max_b, dst, fy, BBeam, HBeam)
Ast2, dt2, Mn_N2, db_t2, Mpr_N2 = AsBeam(MNU2, Ele.EleTag, cover, ro_min_b, ro_max_b, dst, fy, BBeam, HBeam)
Asb2, db2, Mn_P2, db_b2, Mpr_P2 = AsBeam(MPU2, Ele.EleTag, cover, ro_min_b, ro_max_b, dst, fy, BBeam, HBeam)
# print(Ele.EleTag, 'Mn_N1 ', Mn_N1, 'Mn_P1', Mn_P1, 'Mn_N2 ', Mn_N2, 'Mn_P2', Mn_P2)
# print(Ele.EleTag, 'Mpr_N1 ', Mpr_N1, 'Mpr_P1', Mpr_P1, 'Mpr_N2 ', Mpr_N2, 'Mpr_P2', Mpr_P2)
VI1 = 1.2 * VID + 1.6 * VIL
VI2 = 1.2 * VID + 1.0 * VIL - 1.0 * VIE
VI3 = 0.9 * VID - 1.0 * VIE
VI4 = abs(-(Mn_P1 + Mn_N2) / Ele.LEle + ((1.2 + 0.2*Sds)*WDL + 1.0*WLL) * Ele.LEle / 2.)
VI5 = (Mn_N1 + Mn_P2) / Ele.LEle + ((1.2 + 0.2*Sds)*WDL + 1.0*WLL) * Ele.LEle / 2.
VI6 = 1.2 * VID + 1.0 * VIL - Omo * VIE
VI7 = 0.9 * VID - Omo * VIE
VU1a = max(VI1, VI2, VI3)
VU1b = max(VI4, VI5)
VU1c = max(VI6, VI7)
VU1 = max(VU1a, min(VU1b, VU1c)) # Cortante negativo nudo inicial de diseño
VE1 = 1.2 * VED + 1.6 * VEL
VE2 = 1.2 * VED + 1.0 * VEL + 1.0 * VEE
VE3 = 0.9 * VED + 1.0 * VEE
VE4 = (Mn_P1 + Mn_N2) / Ele.LEle + ((1.2 + 0.2*Sds)*WDL + 1.0*WLL) * Ele.LEle / 2.
VE5 = abs(-(Mn_N1 + Mn_P2) / Ele.LEle + ((1.2 + 0.2*Sds)*WDL + 1.0*WLL) * Ele.LEle / 2.)
VE6 = 1.2 * VED + 1.0 * VEL + Omo*VEE
VE7 = 0.9 * VED + Omo*VEE
VU2a = max(VE1, VE2, VE3)
VU2b = max(VE4, VE5)
VU2c = max(VE6, VE7)
VU2 = max(VU2a, min(VU2b, VU2c)) # Negative shear node final design
Vpr_1 = (Mpr_P1 + Mpr_N2) / Ele.LEle + (1.2 * WDL + WLL) * Ele.LEle / 2.
Vpr_2 = (Mpr_N1 + Mpr_P2) / Ele.LEle + (1.2 * WDL + WLL) * Ele.LEle / 2.
Vpr = max(Vpr_1, Vpr_2)
nst1, sst1 = AvBeam(VU1, db_t1, dt1, Ele.EleTag, fy, dst, Ast, BBeam)
nst2, sst2 = AvBeam(VU2, db_t2, dt2, Ele.EleTag, fy, dst, Ast, BBeam)
DataBeamDesing.append(BeamDesing(Ele.EleTag, BBeam, HBeam, Ast1, dt1, Mn_N1, Asb1, db1, Mn_P1, nst1,
sst1, Ast2, dt2, Mn_N2, Asb2, db2, Mn_P2, nst2, sst2, Ele.Nod_ini,
Ele.Nod_end, db_t1, db_b1, db_t2, db_b2, Vpr, VU1, VU2))
self.ui.tbl_data_design_beams.setRowCount(0)
data_beams_table(self)
self.ui.progressBarBeamDesign.hide()
# self.QProgressBar.reset()
# Column design procedure
self.ui.progressBarColumnDesign.show()
# self.ui.progressBarBeamDesign.setValue(50)
# self.ui.progressBarColumnDesign.setFormat('designing columns . . .')
# self.ui.progressBarColumnDesign.setStyleSheet('text-align: center')
Beta1C = beta1(fcC)
DataColDesing = []
nprog = 0
for (Ele, EleForceD, EleForceDL, EleForceDLE) in zip(Elements, ElemnsForceD, ElemnsForceDL, ElemnsForceDLE):
self.ui.progressBarColumnDesign.setValue(int(100 * nprog / nelems))
nprog = nprog + 1
if ListNodes[Ele.Nod_ini, 1] == ListNodes[Ele.Nod_end, 1]:
if ListNodes[Ele.Nod_end, 2] == Loc_heigth[-1]:
ncolsn = 1
else:
ncolsn = 2
Mn_N_R, Mn_P_R, Mn_N_L, Mn_P_L = 0, 0, 0, 0
for DB in DataBeamDesing:
if Ele.Nod_end == DB.Nod_ini:
Mn_N_R, Mn_P_R = DB.Mn_n1, DB.Mn_p1
if Ele.Nod_end == DB.Nod_end:
Mn_N_L, Mn_P_L = DB.Mn_n2, DB.Mn_p2
Sum_Mn_B = max(Mn_P_R + Mn_N_L, Mn_N_R + Mn_P_L)
# print('Node =', Ele.Nod_end, 'Sum_Mn_Beams =', Sum_Mn_B)
b, h = Ele.BEle, Ele.HEle
MID = EleForceD[3]
MIL = EleForceDL[3] - MID
MIE = EleForceDLE[3] - MID - MIL
PID = EleForceD[2]
PIL = EleForceDL[2] - PID
PIE = EleForceDLE[2] - PID - PIL
MI1, MI2, MI3, MI4, MI5 = Combo_ACI(MID, MIL, MIE)
PI1, PI2, PI3, PI4, PI5 = Combo_ACI(PID, PIL, PIE)
MED = -EleForceD[6]
MEL = -EleForceDL[6] - MED
MEE = -EleForceDLE[6] - MED - MEL
# print('MID ', MID, 'MED', MED, 'MIL ', MIL, 'MEL', MEL, 'MIE ', MIE, 'MEE', MEE)
PED = -EleForceD[5]
PEL = -EleForceDL[5] - PED
PEE = -EleForceDLE[5] - PED - PEL
ME1, ME2, ME3, ME4, ME5 = Combo_ACI(MED, MEL, MEE)
PE1, PE2, PE3, PE4, PE5 = Combo_ACI(PED, PEL, PEE)
Nu_min = min([PI2, PI3, PI4, PI5, PE2, PE3, PE4, PE5])
Pu_v = np.array([PI1, PI2, PI3, PI4, PI5, PE1, PE2, PE3, PE4, PE5])
Mu_v = np.array([MI1, MI2, MI3, MI4, MI5, ME1, ME2, ME3, ME4, ME5])
Mu_v = np.absolute(Mu_v)
FactorColBeamStr = self.ui.Col_to_beam_str_ratio.value()
nbH, nbB, db, As, fiPn, fiMn, Mn_i, d, dist, ro, Mu_i, ColBeamStr = AsColumn(b, h, EleTag, cover, dst, fy,
Beta1C, Pu_v, Mu_v, Sum_Mn_B,
FactorColBeamStr, ncolsn, Nu_min)
# print('Mn_i =', Mn_i)
VID = EleForceD[1]
VIL = EleForceDL[1] - VID
VIE = EleForceDLE[1] - VID - VIL
VID, VIL, VIE = abs(VID), abs(VIL), abs(VIE)
Mn_is = Mn_i[[1, 2, 3, 4, 6, 7, 8, 9]]
Mn_max = np.max(Mn_is) # Maximum moment of all seismic combo
VI1, VI2, VI3, VI4, VI5 = Combo_ACI(VID, VIL, VIE)
VI6 = 2.0 * Mn_max / Ele.LEle
VI7 = 1.2 * VID + 1.0 * VIL + Omo * VIE
VI8 = 1.2 * VID + 1.0 * VIL - Omo * VIE
VI9 = 0.9 * VID + Omo * VIE
VI10 = 0.9 * VID - Omo * VIE
VUa = max([VI1, VI2, VI3, VI4, VI5])
# print('VUa', VUa)
VUb = VI6
# print('VUb', VUb)
VUc = max([VI7, VI8, VI9, VI10])
# print('VUc', VUc)
Vu = max([VUa, min([VUb, VUc])]) # Cortante maximo de diseño
# print('Vu', Vu)
sst, nsB, nsH, Vn = AvColumn(EleTag, Vu, b, h, nbH, nbB, dst, Ast, Nu_min, db, fy)
NUG1 = abs(PID + 0.25 * PIL)
NUG2 = abs(PED + 0.25 * PEL)
NUD1 = abs(PID + 0.25 * PIL + PIE)
NUD2 = abs(PED + 0.25 * PEL + PEE)
MUD1 = abs(MID + 0.25 * MIL + MIE)
MUD2 = abs(MED + 0.25 * MEL + MEE)
VUD1 = abs(VID + 0.25 * VIL + VIE)
VUD2 = abs(VED + 0.25 * VEL + VEE)
DataColDesing.append(ColDesing(Ele.EleTag, b, h, nbH, nbB, db, As, Pu_v, Mu_v, fiPn, fiMn, Mn_i, d,
dist, ro, Mu_i, sst, nsB, nsH, Ele.Nod_ini, Ele.Nod_end, NUD1, NUD2,
NUG1, NUG2, MUD1, MUD2, VUD1, VUD2, ColBeamStr, Vn))
self.ui.tbl_data_design_columns.setRowCount(0)
data_columns_table(self)
self.ui.tabWidget.setCurrentIndex(1)
self.ui.progressBarColumnDesign.hide()
# Frame Geometry plot
fig = self.ui.DataFrame.canvas.axes
fig.clear()
ax = fig.add_axes([0, 0, 0.9, 1])
ax.plot(ListNodes[:, 1], ListNodes[:, 2], 'ks')
# print('ListNodes[:, 1]', ListNodes[:, 1])
# print('Desp_x[-1, :]', Desp_x[:, -1])
Nodes_desp_x = ListNodes[:, 1] + 20 * Desp_x[:, -1]
Nodes_desp_y = ListNodes[:, 2] + 5 * Desp_y[:, -1]
ax.plot(Nodes_desp_x, Nodes_desp_y, 's', color='red', alpha=0.5)
ax.axis('off')
ind = 0
for Ele in Elements:
xi = ListNodes[Ele.Nod_ini, 1]
yi = ListNodes[Ele.Nod_ini, 2]
xe = ListNodes[Ele.Nod_end, 1]
ye = ListNodes[Ele.Nod_end, 2]
ax.plot([xi, xe], [yi, ye], 'k-', alpha=.8)
xid = Nodes_desp_x[Ele.Nod_ini]
yid = Nodes_desp_y[Ele.Nod_ini]
xed = Nodes_desp_x[Ele.Nod_end]
yed = Nodes_desp_y[Ele.Nod_end]
xd = np.array([xid, xed])
yd = np.array([yid, yed])
ax.plot(xd, yd, 'r-', alpha=.2)
if xi == xe:
ax.text(xi, (ye + yi) / 2, r'C{}'.format(Ele.EleTag), style='italic', fontsize=8, rotation='vertical',
verticalalignment='center')
if yi == ye:
ax.text((xe + xi) / 2, yi, r'B{}'.format(Ele.EleTag), style='italic', fontsize=8,
horizontalalignment='center')
if xe == Loc_span[-1]:
Delta_x = xed - xid
ax.text(xed + .05 * Delta_x, yed, r'$\Delta = {:.2f} %$'.format(drift_p[ind] * 100),
style='italic', fontsize=8)
ind += 1
for DC in DataColDesing:
xi = ListNodes[DC.Nod_ini, 1]
yi = ListNodes[DC.Nod_ini, 2]
xe = ListNodes[DC.Nod_end, 1]
ye = ListNodes[DC.Nod_end, 2]
Delta_x = xe - xi
Delta_y = ye - yi
ax.text(xe + 0.05*Delta_y, ye + 0.10*Delta_y, r'{:.1f} '.format(DC.ColBeamStr), style='italic', fontsize=8,
va='top', ha='right', multialignment="right", bbox=dict(boxstyle='round', fc="w", ec="k"))
ax.axis('equal')
fig.set_tight_layout(False)
self.ui.DataFrame.canvas.draw()
self.ui.DataFrame.canvas.show()