forked from SforAiDl/vformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_encoder.py
175 lines (140 loc) · 4.42 KB
/
test_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import torch.nn as nn
from vformer.encoder.embedding import TubeletEmbedding
from vformer.functional import PatchMerging
from vformer.utils import ENCODER_REGISTRY
encoder_modules = ENCODER_REGISTRY.get_list()
def test_VanillaEncoder():
test_tensor = torch.randn(2, 65, 1024)
encoder = ENCODER_REGISTRY.get("VanillaEncoder")(
embedding_dim=1024, depth=6, num_heads=16, head_dim=64, mlp_dim=2048
)
out = encoder(test_tensor)
assert out.shape == test_tensor.shape # shape remains same
del encoder, test_tensor
def test_SwinEncoder():
test_tensor = torch.randn(3, 3136, 96)
# when downsampled
encoder = ENCODER_REGISTRY.get("SwinEncoder")(
dim=96,
input_resolution=(224 // 4, 224 // 4),
depth=2,
num_heads=3,
window_size=7,
downsample=PatchMerging,
)
out = encoder(test_tensor)
assert out.shape == (3, 784, 192)
del encoder
# when not downsampled
encoder = ENCODER_REGISTRY.get("SwinEncoder")(
dim=96,
input_resolution=(224 // 4, 224 // 4),
depth=2,
num_heads=3,
window_size=7,
downsample=None,
use_checkpoint=True,
)
out = encoder(test_tensor)
assert out.shape == (3, 3136, 96)
del encoder
encoder_block = ENCODER_REGISTRY.get("SwinEncoderBlock")(
dim=96, input_resolution=(224 // 4, 224 // 4), num_heads=3, window_size=7
)
out = encoder_block(test_tensor)
assert out.shape == test_tensor.shape
del encoder_block
def test_PVTEncoder():
test_tensor = torch.randn(4, 3136, 64)
encoder = ENCODER_REGISTRY.get("PVTEncoder")(
dim=64,
depth=3,
qkv_bias=True,
qk_scale=0.0,
p_dropout=0.0,
attn_dropout=0.1,
drop_path=[0.0] * 3,
act_layer=nn.GELU,
sr_ratio=1,
linear=False,
use_dwconv=False,
num_heads=1,
mlp_ratio=4,
)
out = encoder(test_tensor, H=56, W=56)
assert out.shape == test_tensor.shape
del encoder
def test_CrossEncoder():
test_tensor1 = torch.randn(3, 5, 128)
test_tensor2 = torch.randn(3, 5, 256)
encoder = ENCODER_REGISTRY.get("CrossEncoder")(128, 256)
out = encoder(test_tensor1, test_tensor2)
assert out[0].shape == test_tensor1.shape
assert out[1].shape == test_tensor2.shape
del encoder
def test_ConViTEncoder():
test_tensor = torch.randn(2, 64, 1024)
encoder = ENCODER_REGISTRY.get("ConViTEncoder")(
embedding_dim=1024, depth=6, num_heads=16, head_dim=64, mlp_dim=2048
)
out = encoder(test_tensor)
assert out.shape == test_tensor.shape # shape remains same
del encoder, test_tensor
def test_ConvVTStage():
test_tensor1 = torch.randn(32, 3, 224, 224)
encoder = ENCODER_REGISTRY.get("ConvVTStage")(
patch_size=7,
patch_stride=4,
patch_padding=2,
img_size=56,
embedding_dim=64,
depth=1,
num_heads=1,
with_cls_token=True,
)
out, cls_tokens = encoder(test_tensor1)
assert out.shape == torch.Size([32, 64, 56, 56])
del encoder
test_tensor1 = torch.randn(32, 3, 224, 224)
encoder = ENCODER_REGISTRY.get("ConvVTStage")(
patch_size=7,
patch_stride=4,
patch_padding=2,
img_size=56,
embedding_dim=64,
depth=1,
num_heads=1,
with_cls_token=True,
init="xavier",
)
out, cls_tokens = encoder(test_tensor1)
assert out.shape == torch.Size([32, 64, 56, 56])
del encoder
def test_TubeletEmbedding():
test_tensor = torch.randn(
7, 20, 3, 224, 224
) # batch_size,time,in_channels,height,width
embedding = TubeletEmbedding(
embedding_dim=192, tubelet_w=16, tubelet_t=5, tubelet_h=16, in_channels=3
)
out = embedding(test_tensor)
assert out.shape == (
7,
4,
196,
192,
) # batch,time/tubelet_t,height*width/(tubelet_h,tubelet_w),embeeding_dim
del embedding
test_tensor = torch.randn(11, 15, 1, 28, 28)
embedding = TubeletEmbedding(96, 5, 7, 7, 1)
out = embedding(test_tensor)
assert out.shape == (11, 3, 16, 96)
del embedding
def test_ViViTEncoder():
encoder = ENCODER_REGISTRY.get("ViViTEncoder")(
dim=192, num_heads=3, head_dim=64, p_dropout=0.0, depth=3
)
test_tensor = torch.randn(7, 20, 196, 192)
logits = encoder(test_tensor)
assert logits.shape == (7, 3920, 192)