forked from google/syzkaller
-
Notifications
You must be signed in to change notification settings - Fork 6
/
prio.go
275 lines (261 loc) · 6.84 KB
/
prio.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2015/2016 syzkaller project authors. All rights reserved.
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
package prog
import (
"fmt"
"math/rand"
"sort"
)
// Calulation of call-to-call priorities.
// For a given pair of calls X and Y, the priority is our guess as to whether
// additional of call Y into a program containing call X is likely to give
// new coverage or not.
// The current algorithm has two components: static and dynamic.
// The static component is based on analysis of argument types. For example,
// if call X and call Y both accept fd[sock], then they are more likely to give
// new coverage together.
// The dynamic component is based on frequency of occurrence of a particular
// pair of syscalls in a single program in corpus. For example, if socket and
// connect frequently occur in programs together, we give higher priority to
// this pair of syscalls.
// Note: the current implementation is very basic, there is no theory behind any
// constants.
func (target *Target) CalculatePriorities(corpus []*Prog) [][]float32 {
static := target.calcStaticPriorities()
if len(corpus) != 0 {
dynamic := target.calcDynamicPrio(corpus)
for i, prios := range dynamic {
for j, p := range prios {
static[i][j] *= p
}
}
}
return static
}
func (target *Target) calcStaticPriorities() [][]float32 {
uses := target.calcResourceUsage()
prios := make([][]float32, len(target.Syscalls))
for i := range prios {
prios[i] = make([]float32, len(target.Syscalls))
}
for _, calls := range uses {
for c0, w0 := range calls {
for c1, w1 := range calls {
if c0 == c1 {
// Self-priority is assigned below.
continue
}
// The static priority is assigned based on the direction of arguments. A higher priority will be
// assigned when c0 is a call that produces a resource and c1 a call that uses that resource.
prios[c0][c1] += w0.inout*w1.in + 0.7*w0.inout*w1.inout
}
}
}
normalizePrio(prios)
// The value assigned for self-priority (call wrt itself) have to be high, but not too high.
for c0, pp := range prios {
pp[c0] = 0.9
}
return prios
}
func (target *Target) calcResourceUsage() map[string]map[int]weights {
uses := make(map[string]map[int]weights)
ForeachType(target.Syscalls, func(t Type, ctx TypeCtx) {
c := ctx.Meta
switch a := t.(type) {
case *ResourceType:
if target.AuxResources[a.Desc.Name] {
noteUsage(uses, c, 0.1, ctx.Dir, "res%v", a.Desc.Name)
} else {
str := "res"
for i, k := range a.Desc.Kind {
str += "-" + k
w := 1.0
if i < len(a.Desc.Kind)-1 {
w = 0.2
}
noteUsage(uses, c, float32(w), ctx.Dir, str)
}
}
case *PtrType:
if _, ok := a.Elem.(*StructType); ok {
noteUsage(uses, c, 1.0, ctx.Dir, "ptrto-%v", a.Elem.Name())
}
if _, ok := a.Elem.(*UnionType); ok {
noteUsage(uses, c, 1.0, ctx.Dir, "ptrto-%v", a.Elem.Name())
}
if arr, ok := a.Elem.(*ArrayType); ok {
noteUsage(uses, c, 1.0, ctx.Dir, "ptrto-%v", arr.Elem.Name())
}
case *BufferType:
switch a.Kind {
case BufferBlobRand, BufferBlobRange, BufferText:
case BufferString:
if a.SubKind != "" {
noteUsage(uses, c, 0.2, ctx.Dir, fmt.Sprintf("str-%v", a.SubKind))
}
case BufferFilename:
noteUsage(uses, c, 1.0, DirIn, "filename")
default:
panic("unknown buffer kind")
}
case *VmaType:
noteUsage(uses, c, 0.5, ctx.Dir, "vma")
case *IntType:
switch a.Kind {
case IntPlain, IntRange:
default:
panic("unknown int kind")
}
}
})
return uses
}
type weights struct {
in float32
inout float32
}
func noteUsage(uses map[string]map[int]weights, c *Syscall, weight float32, dir Dir, str string, args ...interface{}) {
id := fmt.Sprintf(str, args...)
if uses[id] == nil {
uses[id] = make(map[int]weights)
}
callWeight := uses[id][c.ID]
if dir != DirOut {
if weight > uses[id][c.ID].in {
callWeight.in = weight
}
}
if weight > uses[id][c.ID].inout {
callWeight.inout = weight
}
uses[id][c.ID] = callWeight
}
func (target *Target) calcDynamicPrio(corpus []*Prog) [][]float32 {
prios := make([][]float32, len(target.Syscalls))
for i := range prios {
prios[i] = make([]float32, len(target.Syscalls))
}
for _, p := range corpus {
for idx0, c0 := range p.Calls {
for _, c1 := range p.Calls[idx0+1:] {
id0 := c0.Meta.ID
id1 := c1.Meta.ID
prios[id0][id1] += 1.0
}
}
}
normalizePrio(prios)
return prios
}
// normalizePrio assigns some minimal priorities to calls with zero priority,
// and then normalizes priorities to 0.1..1 range.
func normalizePrio(prios [][]float32) {
for _, prio := range prios {
max := float32(0)
min := float32(1e10)
nzero := 0
for _, p := range prio {
if max < p {
max = p
}
if p != 0 && min > p {
min = p
}
if p == 0 {
nzero++
}
}
if nzero != 0 {
min /= 2 * float32(nzero)
}
if min == max {
max = 0
}
for i, p := range prio {
if max == 0 {
prio[i] = 1
continue
}
if p == 0 {
p = min
}
p = (p-min)/(max-min)*0.9 + 0.1
if p > 1 {
p = 1
}
prio[i] = p
}
}
}
// ChooseTable allows to do a weighted choice of a syscall for a given syscall
// based on call-to-call priorities and a set of enabled syscalls.
type ChoiceTable struct {
target *Target
runs [][]int
calls []*Syscall
}
func (target *Target) BuildChoiceTable(corpus []*Prog, enabled map[*Syscall]bool) *ChoiceTable {
if enabled == nil {
enabled = make(map[*Syscall]bool)
for _, c := range target.Syscalls {
enabled[c] = true
}
}
for call := range enabled {
if call.Attrs.Disabled {
delete(enabled, call)
}
}
var enabledCalls []*Syscall
for c := range enabled {
enabledCalls = append(enabledCalls, c)
}
if len(enabledCalls) == 0 {
panic("no syscalls enabled")
}
sort.Slice(enabledCalls, func(i, j int) bool {
return enabledCalls[i].ID < enabledCalls[j].ID
})
for _, p := range corpus {
for _, call := range p.Calls {
if !enabled[call.Meta] {
panic(fmt.Sprintf("corpus contains disabled syscall %v", call.Meta.Name))
}
}
}
prios := target.CalculatePriorities(corpus)
run := make([][]int, len(target.Syscalls))
for i := range run {
if !enabled[target.Syscalls[i]] {
continue
}
run[i] = make([]int, len(target.Syscalls))
sum := 0
for j := range run[i] {
if enabled[target.Syscalls[j]] {
sum += int(prios[i][j] * 1000)
}
run[i][j] = sum
}
}
return &ChoiceTable{target, run, enabledCalls}
}
func (ct *ChoiceTable) Enabled(call int) bool {
return ct.runs[call] != nil
}
func (ct *ChoiceTable) choose(r *rand.Rand, bias int) int {
if bias < 0 {
bias = ct.calls[r.Intn(len(ct.calls))].ID
}
if !ct.Enabled(bias) {
panic("bias to disabled syscall")
}
run := ct.runs[bias]
x := r.Intn(run[len(run)-1]) + 1
res := sort.SearchInts(run, x)
if !ct.Enabled(res) {
panic("selected disabled syscall")
}
return res
}