Skip to content
/ nnvm Public
forked from dmlc/nnvm

Intermediate Computational Graph Representation for Deep Learning Systems

License

Notifications You must be signed in to change notification settings

xcbat/nnvm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NNVM: Build deep learning system by parts

NNVM is not a deep learning library. It is a modular, lightweight library to help build deep learning libraries efficiently.

What is it

While most deep learning systems offer end to end solutions, it is interesting to ask if we can actually assemble a deep learning system by parts. The goal is to enable hackers can customize optimizations, target platforms and set of operators they care about. We believe that the modular system is an interesting direction. The hope is that effective parts can be assembled together just like you assemble your own desktops. So the customized deep learning solution can be minimax, minimum in terms of dependencies, while maxiziming the users' need.

NNVM offers one such part, it provides a generic to do generic computation graph optimization such as memory reduction, device allocation, operator fusion while being agnostic to the operator interface defintion and how operators are executed. NNVM is inspired by LLVM, aiming to be an intermediate representation library for neural nets and computation graphs in general.

Deep learning system by parts

This is one way to divide the deep learning system into common parts. Each can be isolated to a modular part.

  • Computation graph definition, manipulation.
  • Computation graph intermediate optimization.
  • Computation graph execution.
  • Operator kernel libraries.
  • Imperative task scheduling and parallel task coordination.

We hope that there will be more modular parts in the future, so system building can be fun and rewarding.

Links

MXNet will be using NNVM as its intermediate representation layer for symbolic graphs.

About

Intermediate Computational Graph Representation for Deep Learning Systems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 80.1%
  • Python 14.2%
  • CMake 4.7%
  • Other 1.0%