-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_samples.py
279 lines (227 loc) · 9.96 KB
/
generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generate samples from the MaskGAN.
Launch command:
python generate_samples.py
--data_dir=/tmp/data/imdb --data_set=imdb
--batch_size=256 --sequence_length=20 --base_directory=/tmp/imdb
--hparams="gen_rnn_size=650,dis_rnn_size=650,gen_num_layers=2,
gen_vd_keep_prob=1.0" --generator_model=seq2seq_vd
--discriminator_model=seq2seq_vd --is_present_rate=0.5
--maskgan_ckpt=/tmp/model.ckpt-45494
--seq2seq_share_embedding=True --dis_share_embedding=True
--attention_option=luong --mask_strategy=contiguous --baseline_method=critic
--number_epochs=4
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import os
# Dependency imports
import numpy as np
from six.moves import xrange
import tensorflow as tf
import train_mask_gan
from data import imdb_loader
from data import ptb_loader
# Data.
from model_utils import helper
from model_utils import model_utils
SAMPLE_TRAIN = 'TRAIN'
SAMPLE_VALIDATION = 'VALIDATION'
## Sample Generation.
## Binary and setup FLAGS.
tf.app.flags.DEFINE_enum('sample_mode', 'TRAIN',
[SAMPLE_TRAIN, SAMPLE_VALIDATION],
'Dataset to sample from.')
tf.app.flags.DEFINE_string('output_path', '/tmp', 'Model output directory.')
tf.app.flags.DEFINE_boolean(
'output_masked_logs', False,
'Whether to display for human evaluation (show masking).')
tf.app.flags.DEFINE_integer('number_epochs', 1,
'The number of epochs to produce.')
FLAGS = tf.app.flags.FLAGS
def get_iterator(data):
"""Return the data iterator."""
if FLAGS.data_set == 'ptb':
iterator = ptb_loader.ptb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length,
FLAGS.epoch_size_override)
elif FLAGS.data_set == 'imdb':
iterator = imdb_loader.imdb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length)
return iterator
def convert_to_human_readable(id_to_word, arr, p, max_num_to_print):
"""Convert a np.array of indices into words using id_to_word dictionary.
Return max_num_to_print results.
"""
assert arr.ndim == 2
samples = []
for sequence_id in xrange(min(len(arr), max_num_to_print)):
sample = []
for i, index in enumerate(arr[sequence_id, :]):
if p[sequence_id, i] == 1:
sample.append(str(id_to_word[index]))
else:
sample.append('*' + str(id_to_word[index]))
buffer_str = ' '.join(sample)
samples.append(buffer_str)
return samples
def write_unmasked_log(log, id_to_word, sequence_eval):
"""Helper function for logging evaluated sequences without mask."""
indices_arr = np.asarray(sequence_eval)
samples = helper.convert_to_human_readable(id_to_word, indices_arr,
FLAGS.batch_size)
for sample in samples:
log.write(sample + '\n')
log.flush()
return samples
def write_masked_log(log, id_to_word, sequence_eval, present_eval):
indices_arr = np.asarray(sequence_eval)
samples = convert_to_human_readable(id_to_word, indices_arr, present_eval,
FLAGS.batch_size)
for sample in samples:
log.write(sample + '\n')
log.flush()
return samples
def generate_logs(sess, model, log, id_to_word, feed):
"""Impute Sequences using the model for a particular feed and send it to
logs.
"""
# Impute Sequences.
[p, inputs_eval, sequence_eval] = sess.run(
[model.present, model.inputs, model.fake_sequence], feed_dict=feed)
# Add the 0th time-step for coherence.
first_token = np.expand_dims(inputs_eval[:, 0], axis=1)
sequence_eval = np.concatenate((first_token, sequence_eval), axis=1)
# 0th token always present.
p = np.concatenate((np.ones((FLAGS.batch_size, 1)), p), axis=1)
if FLAGS.output_masked_logs:
samples = write_masked_log(log, id_to_word, sequence_eval, p)
else:
samples = write_unmasked_log(log, id_to_word, sequence_eval)
return samples
def generate_samples(hparams, data, id_to_word, log_dir, output_file):
""""Generate samples.
Args:
hparams: Hyperparameters for the MaskGAN.
data: Data to evaluate.
id_to_word: Dictionary of indices to words.
log_dir: Log directory.
output_file: Output file for the samples.
"""
# Boolean indicating operational mode.
is_training = False
# Set a random seed to keep fixed mask.
np.random.seed(0)
with tf.Graph().as_default():
# Construct the model.
model = train_mask_gan.create_MaskGAN(hparams, is_training)
## Retrieve the initial savers.
init_savers = model_utils.retrieve_init_savers(hparams)
## Initial saver function to supervisor.
init_fn = partial(model_utils.init_fn, init_savers)
is_chief = FLAGS.task == 0
# Create the supervisor. It will take care of initialization, summaries,
# checkpoints, and recovery.
sv = tf.Supervisor(
logdir=log_dir,
is_chief=is_chief,
saver=model.saver,
global_step=model.global_step,
recovery_wait_secs=30,
summary_op=None,
init_fn=init_fn)
# Get an initialized, and possibly recovered session. Launch the
# services: Checkpointing, Summaries, step counting.
#
# When multiple replicas of this program are running the services are
# only launched by the 'chief' replica.
with sv.managed_session(
FLAGS.master, start_standard_services=False) as sess:
# Generator statefulness over the epoch.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_initial_state, model.fake_gen_initial_state])
for n in xrange(FLAGS.number_epochs):
print('Epoch number: %d' % n)
# print('Percent done: %.2f' % float(n) / float(FLAGS.number_epochs))
iterator = get_iterator(data)
for x, y, _ in iterator:
if FLAGS.eval_language_model:
is_present_rate = 0.
else:
is_present_rate = FLAGS.is_present_rate
tf.logging.info(
'Evaluating on is_present_rate=%.3f.' % is_present_rate)
model_utils.assign_percent_real(sess, model.percent_real_update,
model.new_rate, is_present_rate)
# Randomly mask out tokens.
p = model_utils.generate_mask()
eval_feed = {model.inputs: x, model.targets: y, model.present: p}
if FLAGS.data_set == 'ptb':
# Statefulness for *evaluation* Generator.
for i, (c, h) in enumerate(model.eval_initial_state):
eval_feed[c] = gen_initial_state_eval[i].c
eval_feed[h] = gen_initial_state_eval[i].h
# Statefulness for the Generator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
eval_feed[c] = fake_gen_initial_state_eval[i].c
eval_feed[h] = fake_gen_initial_state_eval[i].h
[gen_initial_state_eval, fake_gen_initial_state_eval, _] = sess.run(
[
model.eval_final_state, model.fake_gen_final_state,
model.global_step
],
feed_dict=eval_feed)
generate_logs(sess, model, output_file, id_to_word, eval_feed)
output_file.close()
print('Closing output_file.')
return
def main(_):
hparams = train_mask_gan.create_hparams()
log_dir = FLAGS.base_directory
tf.gfile.MakeDirs(FLAGS.output_path)
output_file = tf.gfile.GFile(
os.path.join(FLAGS.output_path, 'reviews.txt'), mode='w')
# Load data set.
if FLAGS.data_set == 'ptb':
raw_data = ptb_loader.ptb_raw_data(FLAGS.data_dir)
train_data, valid_data, _, _ = raw_data
elif FLAGS.data_set == 'imdb':
raw_data = imdb_loader.imdb_raw_data(FLAGS.data_dir)
train_data, valid_data = raw_data
else:
raise NotImplementedError
# Generating more data on train set.
if FLAGS.sample_mode == SAMPLE_TRAIN:
data_set = train_data
elif FLAGS.sample_mode == SAMPLE_VALIDATION:
data_set = valid_data
else:
raise NotImplementedError
# Dictionary and reverse dictionry.
if FLAGS.data_set == 'ptb':
word_to_id = ptb_loader.build_vocab(
os.path.join(FLAGS.data_dir, 'ptb.train.txt'))
elif FLAGS.data_set == 'imdb':
word_to_id = imdb_loader.build_vocab(
os.path.join(FLAGS.data_dir, 'vocab.txt'))
id_to_word = {v: k for k, v in word_to_id.iteritems()}
FLAGS.vocab_size = len(id_to_word)
print('Vocab size: %d' % FLAGS.vocab_size)
generate_samples(hparams, data_set, id_to_word, log_dir, output_file)
if __name__ == '__main__':
tf.app.run()