forked from huggingface/accelerate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_data_loader.py
794 lines (672 loc) · 35.3 KB
/
test_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import pytest
import torch
from parameterized import parameterized
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator, PartialState
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
DataLoaderStateMixin,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
prepare_data_loader,
skip_first_batches,
)
from accelerate.state import GradientState
from accelerate.test_utils.testing import require_torchdata_stateful_dataloader
from accelerate.utils import is_torchdata_stateful_dataloader_available
if is_torchdata_stateful_dataloader_available():
from torchdata.stateful_dataloader import (
StatefulDataLoader,
)
def parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = f"num_workers_{param.args[0]}"
return f"{func.__name__}_{param_based_name}"
class RandomIterableDataset(IterableDataset):
# For testing, an iterable dataset of random length
def __init__(self, p_stop=0.01, max_length=1000):
self.p_stop = p_stop
self.max_length = max_length
def __iter__(self):
count = 0
stop = False
while not stop and count < self.max_length:
yield count
count += 1
stop = random.random() < self.p_stop
class SimpleIterableDataset(IterableDataset):
def __init__(self, num_samples=1000):
self.num_samples = num_samples
def __iter__(self):
for _ in range(self.num_samples):
yield torch.rand(1)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch
class DataLoaderTester(unittest.TestCase):
def check_batch_sampler_shards(self, batch_sampler, expected, split_batches=False, even_batches=True):
batch_sampler_shards = [
BatchSamplerShard(batch_sampler, 2, i, split_batches=split_batches, even_batches=even_batches)
for i in range(2)
]
batch_sampler_lists = [list(batch_sampler_shard) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
assert [len(shard) for shard in batch_sampler_shards] == [len(e) for e in expected]
assert batch_sampler_lists == expected
def test_batch_sampler_shards_with_no_splits(self):
# Check the shards when the dataset is a round multiple of total batch size.
batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(batch_sampler, expected)
batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=True)
# Expected shouldn't change
self.check_batch_sampler_shards(batch_sampler, expected)
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(batch_sampler, expected)
batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=True)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected)
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(batch_sampler, expected)
batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=True)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected)
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(batch_sampler, expected)
batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=True)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected)
# Check the shards when the dataset is very small.
batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=False)
expected = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(batch_sampler, expected)
batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=True)
expected = [[], []]
self.check_batch_sampler_shards(batch_sampler, expected)
def test_batch_sampler_shards_with_splits(self):
# Check the shards when the dataset is a round multiple of batch size.
batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=False)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=True)
# Expected shouldn't change
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
# Check the shards when the dataset is not a round multiple of batch size.
batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=False)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=True)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=False)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=True)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
# Check the shards when the dataset is very small.
batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=False)
expected = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=True)
expected = [[], []]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True)
def test_batch_sampler_shards_with_no_splits_no_even(self):
# Check the shards when the dataset is a round multiple of total batch size.
batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=True)
# Expected shouldn't change
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=True)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=True)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=False)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=True)
expected = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
# Check the shards when the dataset is very small.
batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=False)
expected = [[[0, 1]], []]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=True)
expected = [[], []]
self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False)
def test_batch_sampler_shards_with_splits_no_even(self):
# Check the shards when the dataset is a round multiple of batch size.
batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=False)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=True)
# Expected shouldn't change
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
# Check the shards when the dataset is not a round multiple of batch size.
batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=False)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=True)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=False)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=True)
expected = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
# Check the shards when the dataset is very small.
batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=False)
expected = [[[0, 1]], []]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=True)
expected = [[], []]
self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False)
def test_batch_sampler_with_varying_batch_size(self):
batch_sampler = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
batch_sampler_shards = [BatchSamplerShard(batch_sampler, 2, i, even_batches=False) for i in range(2)]
assert len(batch_sampler_shards[0]) == 3
assert len(batch_sampler_shards[1]) == 2
assert list(batch_sampler_shards[0]) == [[0, 1, 2], [5, 6, 7, 8], [12, 13]]
assert list(batch_sampler_shards[1]) == [[3, 4], [9, 10, 11]]
def check_iterable_dataset_shards(
self, dataset, seed, batch_size, drop_last=False, num_processes=2, split_batches=False
):
random.seed(seed)
reference = list(dataset)
iterable_dataset_shards = [
IterableDatasetShard(
dataset,
batch_size=batch_size,
drop_last=drop_last,
num_processes=num_processes,
process_index=i,
split_batches=split_batches,
)
for i in range(num_processes)
]
iterable_dataset_lists = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(seed)
iterable_dataset_lists.append(list(iterable_dataset_shard))
shard_batch_size = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
first_list = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
assert len(l) == len(first_list)
assert (len(l) % shard_batch_size) == 0
observed = []
for idx in range(0, len(first_list), shard_batch_size):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(reference) < len(observed):
reference += reference
assert observed == reference[: len(observed)]
def test_iterable_dataset_shard(self):
seed = 42
dataset = RandomIterableDataset()
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=False)
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=False)
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=True)
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=True)
# Edge case with a very small dataset
dataset = RandomIterableDataset(max_length=2)
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=False)
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=False)
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=True)
self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=True)
def test_iterable_dataset_using_none_batch_size(self):
dataset = SimpleIterableDataset(100)
dataloader = DataLoader(dataset, batch_size=None)
dataloader = prepare_data_loader(dataloader)
for d in dataloader:
assert isinstance(d, torch.Tensor)
def test_skip_batch_sampler(self):
batch_sampler = BatchSampler(range(16), batch_size=4, drop_last=False)
new_batch_sampler = SkipBatchSampler(batch_sampler, 2)
assert list(new_batch_sampler) == [[8, 9, 10, 11], [12, 13, 14, 15]]
def test_dataloader_inheritance(self):
"""
`DataLoaderAdapter`'s parent classes are dynamically constructed, assert that subclasses of DataLoaderAdapter
are instances of DataLoader and DataLoaderStateMixin.
"""
skip_dl = SkipDataLoader(range(16), batch_size=4, skip_batches=2)
dl_shard = DataLoaderShard(range(16), batch_size=4)
dl_dispatcher = DataLoaderDispatcher(range(16), batch_size=4)
assert isinstance(skip_dl, DataLoader)
assert isinstance(dl_shard, DataLoader)
assert isinstance(dl_dispatcher, DataLoader)
assert isinstance(dl_shard, DataLoaderStateMixin)
assert isinstance(dl_dispatcher, DataLoaderStateMixin)
assert isinstance(skip_dl.base_dataloader, DataLoader)
assert isinstance(dl_shard.base_dataloader, DataLoader)
assert isinstance(dl_dispatcher.base_dataloader, DataLoader)
with pytest.raises(AttributeError):
_ = DataLoaderShard.base_dataloader
def test_skip_data_loader(self):
dataloader = SkipDataLoader(list(range(16)), batch_size=4, skip_batches=2)
assert [t.tolist() for t in dataloader] == [[8, 9, 10, 11], [12, 13, 14, 15]]
def test_skip_first_batches(self):
dataloader = DataLoader(list(range(16)), batch_size=4)
new_dataloader = skip_first_batches(dataloader, num_batches=2)
assert [t.tolist() for t in new_dataloader] == [[8, 9, 10, 11], [12, 13, 14, 15]]
def test_end_of_dataloader(self):
dataloader = DataLoaderShard(list(range(16)), batch_size=4)
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
# Test it also works on the second iteration
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
def test_end_of_dataloader_dispatcher(self):
dataloader = DataLoaderDispatcher(range(16), batch_size=4)
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
# Test it also works on the second iteration
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
class StatefulDataLoaderTester(unittest.TestCase):
@require_torchdata_stateful_dataloader
def test_skip_data_loader(self):
dataloader = SkipDataLoader(list(range(16)), batch_size=4, skip_batches=2, use_stateful_dataloader=True)
assert isinstance(dataloader, StatefulDataLoader)
assert [t.tolist() for t in dataloader] == [[8, 9, 10, 11], [12, 13, 14, 15]]
@require_torchdata_stateful_dataloader
def test_end_of_dataloader(self):
dataloader = DataLoaderShard(list(range(16)), batch_size=4, use_stateful_dataloader=True)
assert dataloader.use_stateful_dataloader
assert isinstance(dataloader, StatefulDataLoader)
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
# Test it also works on the second iteration
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
@require_torchdata_stateful_dataloader
def test_end_of_dataloader_dispatcher(self):
dataloader = DataLoaderDispatcher(range(16), batch_size=4, use_stateful_dataloader=True)
assert isinstance(dataloader, StatefulDataLoader)
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
# Test it also works on the second iteration
for idx, _ in enumerate(dataloader):
assert dataloader.end_of_dataloader == (idx == 3)
@parameterized.expand([0, 2], name_func=parameterized_custom_name_func)
@require_torchdata_stateful_dataloader
def test_dataloader_state_dict(self, num_workers):
"""
Test that saving a stateful dataloader's state, then loading it back, gives the same results.
"""
dataset = list(range(16))
dataloader = DataLoaderShard(dataset, batch_size=4, use_stateful_dataloader=True, num_workers=num_workers)
assert dataloader.use_stateful_dataloader
assert isinstance(dataloader, StatefulDataLoader)
vals = []
for idx, val in enumerate(dataloader):
vals.append(val)
if idx == 1:
sd = dataloader.state_dict()
assert len(vals) == 4
dataloader2 = DataLoaderShard(dataset, batch_size=4, use_stateful_dataloader=True, num_workers=num_workers)
dataloader2.load_state_dict(sd)
data1 = vals[2:]
data2 = list(dataloader2)
assert len(data1) == len(data2)
for d1, d2 in zip(data1, data2):
assert torch.allclose(d1, d2)
@parameterized.expand([0, 2], name_func=parameterized_custom_name_func)
@require_torchdata_stateful_dataloader
def test_dataloader_dispatcher_state_dict(self, num_workers):
"""
Test that saving a stateful dataloader's state, then loading it back, gives the same results.
"""
dataset = list(range(16))
dataloader = DataLoaderDispatcher(dataset, batch_size=4, use_stateful_dataloader=True, num_workers=num_workers)
assert dataloader.use_stateful_dataloader
assert isinstance(dataloader, StatefulDataLoader)
vals = []
for idx, val in enumerate(dataloader):
vals.append(val)
if idx == 1:
sd = dataloader.state_dict()
assert len(vals) == 4
dataloader2 = DataLoaderDispatcher(
dataset, batch_size=4, use_stateful_dataloader=True, num_workers=num_workers
)
dataloader2.load_state_dict(sd)
data1 = vals[2:]
data2 = list(dataloader2)
assert len(data1) == len(data2)
for d1, d2 in zip(data1, data2):
assert torch.allclose(d1, d2)
@require_torchdata_stateful_dataloader
def test_dataloader_inheritance(self):
"""
`DataLoaderAdapter`'s parent classes are dynamically constructed, assert that if use_stateful_dataloader=True,
subclasses of DataLoaderAdapter are instances of StatefulDataLoader and DataLoaderStateMixin.
"""
skip_dl = SkipDataLoader(range(16), batch_size=4, skip_batches=2, use_stateful_dataloader=True)
dl_shard = DataLoaderShard(range(16), batch_size=4, use_stateful_dataloader=True)
dl_dispatcher = DataLoaderDispatcher(range(16), batch_size=4, use_stateful_dataloader=True)
assert isinstance(skip_dl, StatefulDataLoader)
assert isinstance(dl_shard, StatefulDataLoader)
assert isinstance(dl_dispatcher, StatefulDataLoader)
assert isinstance(dl_shard, DataLoaderStateMixin)
assert isinstance(dl_dispatcher, DataLoaderStateMixin)
assert isinstance(skip_dl.base_dataloader, StatefulDataLoader)
assert isinstance(dl_shard.base_dataloader, StatefulDataLoader)
assert isinstance(dl_dispatcher.base_dataloader, StatefulDataLoader)
@parameterized.expand([0, 2], name_func=parameterized_custom_name_func)
@require_torchdata_stateful_dataloader
def test_stateful_dataloader_adapter_equivalent_to_torchdata_stateful_dataloader(self, num_workers):
"""
Assert that `state_dict()` and `load_state_dict()` for derived subclasses of `DataLoaderAdapter` produce
the same behavior as `state_dict()` and `load_state_dict()` for `StatefulDataLoader`.
"""
dataset = list(range(64))
# Set the seed for reproducibility
def g():
return torch.Generator().manual_seed(42)
accelerator = Accelerator()
stateful_dl = StatefulDataLoader(dataset, batch_size=4, num_workers=num_workers, generator=g())
skip_dl = SkipDataLoader(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
dl_shard = DataLoaderShard(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
dl_dispatcher = DataLoaderDispatcher(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
dataloaders_under_test = [skip_dl, dl_shard, dl_dispatcher]
num_batches_to_skip = 8
def get_first_n_batches(dl, n, device):
"""
Iterate over the first `n` batches of a dataloader then break, returning the batches in a list.
"""
batches = []
for idx, batch in enumerate(dl):
if idx == n - 1:
if hasattr(dl, "end"):
dl.end()
break
batches.append(batch.to(device))
return batches
# Iterate over all of the dataloaders identically, expect the same values
expected_batches = get_first_n_batches(stateful_dl, num_batches_to_skip, accelerator.device)
batches_from_dataloaders = [
get_first_n_batches(dl, num_batches_to_skip, accelerator.device) for dl in dataloaders_under_test
]
for dl_batches in batches_from_dataloaders:
for expected, actual in zip(expected_batches, dl_batches):
assert torch.allclose(expected, actual)
# The adapters should all produce the same state_dict as the reference stateful dataloader
expected_state_dict = stateful_dl.state_dict()
skip_dl_state_dict = skip_dl.state_dict()
dl_shard_state_dict = dl_shard.state_dict()
dl_dispatcher_state_dict = dl_dispatcher.state_dict()
assert expected_state_dict == skip_dl_state_dict
assert expected_state_dict == dl_shard_state_dict
assert expected_state_dict == dl_dispatcher_state_dict
# Load the state dict into new dataloaders
manual_skip_dl = SkipDataLoader(
dataset,
batch_size=4,
num_workers=num_workers,
generator=g(),
skip_batches=num_batches_to_skip,
use_stateful_dataloader=True,
)
loaded_stateful_dl = StatefulDataLoader(dataset, batch_size=4, num_workers=num_workers, generator=g())
loaded_stateful_dl.load_state_dict(expected_state_dict)
loaded_skip_dl = SkipDataLoader(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
loaded_skip_dl.load_state_dict(expected_state_dict)
loaded_dl_shard = DataLoaderShard(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
loaded_dl_shard.load_state_dict(expected_state_dict)
loaded_dl_dispatcher = DataLoaderDispatcher(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
loaded_dl_dispatcher.load_state_dict(expected_state_dict)
# Continue the iteration, expecting identical behavior across the board
def get_all_batches(dl, device):
"""
Iterate over all batches of a dataloader, returning (batches, num_batches_yielded)
"""
batches = []
num_batches_yielded = 0
for batch in dl:
batches.append(batch.to(device))
num_batches_yielded += 1
return (batches, num_batches_yielded)
expected_batch_results = get_all_batches(loaded_stateful_dl, accelerator.device)
dataloader_batch_results = [
get_all_batches(dl, accelerator.device)
for dl in [manual_skip_dl, loaded_skip_dl, loaded_dl_shard, loaded_dl_dispatcher]
]
for dl_results in dataloader_batch_results:
for expected, actual in zip(expected_batches, dl_batches):
assert torch.allclose(expected[0], actual[0])
assert expected_batch_results[1] == dl_results[1]
assert accelerator.gradient_state.active_dataloader is None
@parameterized.expand([0, 2], name_func=parameterized_custom_name_func)
@require_torchdata_stateful_dataloader
def test_decoupled_stateful_dataloader_adapter_equivalent_to_torchdata_stateful_dataloader(self, num_workers):
"""
Assert that `state_dict()` and `load_state_dict()` for derived subclasses of `DataLoaderAdapter` produce
the same behavior as `state_dict()` and `load_state_dict()` for `StatefulDataLoader` when *not* using
Accelerator (and instead using the decoupled `PartialState` workflow).
"""
dataset = list(range(64))
# Set the seed for reproducibility
def g():
return torch.Generator().manual_seed(42)
state = PartialState()
stateful_dl = StatefulDataLoader(dataset, batch_size=4, num_workers=num_workers, generator=g())
skip_dl = SkipDataLoader(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
dl_shard = DataLoaderShard(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
dl_dispatcher = DataLoaderDispatcher(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
dataloaders_under_test = [skip_dl, dl_shard, dl_dispatcher]
num_batches_to_skip = 8
def get_first_n_batches(dl, n, device):
"""
Iterate over the first `n` batches of a dataloader then break, returning the batches in a list.
"""
batches = []
for idx, batch in enumerate(dl):
if idx == n - 1:
if hasattr(dl, "end"):
dl.end()
break
batches.append(batch.to(device))
return batches
# Iterate over all of the dataloaders identically, expect the same values
expected_batches = get_first_n_batches(stateful_dl, num_batches_to_skip, state.device)
batches_from_dataloaders = [
get_first_n_batches(dl, num_batches_to_skip, state.device) for dl in dataloaders_under_test
]
for dl_batches in batches_from_dataloaders:
for expected, actual in zip(expected_batches, dl_batches):
assert torch.allclose(expected, actual)
# The adapters should all produce the same state_dict as the reference stateful dataloader
expected_state_dict = stateful_dl.state_dict()
skip_dl_state_dict = skip_dl.state_dict()
dl_shard_state_dict = dl_shard.state_dict()
dl_dispatcher_state_dict = dl_dispatcher.state_dict()
assert expected_state_dict == skip_dl_state_dict
assert expected_state_dict == dl_shard_state_dict
assert expected_state_dict == dl_dispatcher_state_dict
# Load the state dict into new dataloaders
manual_skip_dl = SkipDataLoader(
dataset,
batch_size=4,
num_workers=num_workers,
generator=g(),
skip_batches=num_batches_to_skip,
use_stateful_dataloader=True,
)
loaded_stateful_dl = StatefulDataLoader(dataset, batch_size=4, num_workers=num_workers, generator=g())
loaded_stateful_dl.load_state_dict(expected_state_dict)
loaded_skip_dl = SkipDataLoader(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
loaded_skip_dl.load_state_dict(expected_state_dict)
loaded_dl_shard = DataLoaderShard(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
loaded_dl_shard.load_state_dict(expected_state_dict)
loaded_dl_dispatcher = DataLoaderDispatcher(
dataset, batch_size=4, num_workers=num_workers, generator=g(), use_stateful_dataloader=True
)
loaded_dl_dispatcher.load_state_dict(expected_state_dict)
# Continue the iteration, expecting identical behavior across the board
def get_all_batches(dl, device):
"""
Iterate over all batches of a dataloader, returning (batches, num_batches_yielded)
"""
batches = []
num_batches_yielded = 0
for batch in dl:
batches.append(batch.to(device))
num_batches_yielded += 1
return (batches, num_batches_yielded)
expected_batch_results = get_all_batches(loaded_stateful_dl, state.device)
dataloader_batch_results = [
get_all_batches(dl, state.device)
for dl in [manual_skip_dl, loaded_skip_dl, loaded_dl_shard, loaded_dl_dispatcher]
]
for dl_results in dataloader_batch_results:
for expected, actual in zip(expected_batches, dl_batches):
assert torch.allclose(expected[0], actual[0])
assert expected_batch_results[1] == dl_results[1]
# Using the decoupled (`PartialState`) workflow, GradientState should be automatically initialized (with
# default parameters) by `DataLoaderDispatcher`
assert GradientState._shared_state != {}, "GradientState should already be initialized!"
gradient_state = GradientState()
assert gradient_state.active_dataloader is None