forked from huggingface/accelerate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_hooks.py
401 lines (316 loc) · 16 KB
/
test_hooks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
import torch
import torch.nn as nn
from torch.fx import symbolic_trace
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_device, torch_device
torch_device = f"{torch_device}:0" if torch_device != "cpu" else "cpu"
class ModelForTest(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(3, 4)
self.batchnorm = nn.BatchNorm1d(4)
self.linear2 = nn.Linear(4, 5)
def forward(self, x):
return self.linear2(self.batchnorm(self.linear1(x)))
class PreForwardHook(ModelHook):
def pre_forward(self, module, *args, **kwargs):
return (args[0] + 1,) + args[1:], kwargs
class PostForwardHook(ModelHook):
def post_forward(self, module, output):
return output + 1
class HooksModelTester(unittest.TestCase):
def test_add_and_remove_hooks(self):
test_model = ModelForTest()
test_hook = ModelHook()
add_hook_to_module(test_model, test_hook)
assert test_model._hf_hook == test_hook
assert hasattr(test_model, "_old_forward")
# Check adding the hook did not change the name or the signature
assert test_model.forward.__name__ == "forward"
assert list(inspect.signature(test_model.forward).parameters) == ["x"]
remove_hook_from_module(test_model)
assert not hasattr(test_model, "_hf_hook")
assert not hasattr(test_model, "_old_forward")
def test_append_and_remove_hooks(self):
test_model = ModelForTest()
test_hook = ModelHook()
add_hook_to_module(test_model, test_hook)
add_hook_to_module(test_model, test_hook, append=True)
assert isinstance(test_model._hf_hook, SequentialHook) is True
assert len(test_model._hf_hook.hooks) == 2
assert hasattr(test_model, "_old_forward")
# Check adding the hook did not change the name or the signature
assert test_model.forward.__name__ == "forward"
assert list(inspect.signature(test_model.forward).parameters) == ["x"]
remove_hook_from_module(test_model)
assert not hasattr(test_model, "_hf_hook")
assert not hasattr(test_model, "_old_forward")
def test_pre_forward_hook_is_executed(self):
test_model = ModelForTest()
x = torch.randn(2, 3)
expected = test_model(x + 1)
expected2 = test_model(x + 2)
test_hook = PreForwardHook()
add_hook_to_module(test_model, test_hook)
output1 = test_model(x)
assert torch.allclose(output1, expected, atol=1e-5)
# Attaching a hook to a model when it already has one replaces, does not chain
test_hook = PreForwardHook()
add_hook_to_module(test_model, test_hook)
output1 = test_model(x)
assert torch.allclose(output1, expected, atol=1e-5)
# You need to use the sequential hook to chain two or more hooks
test_hook = SequentialHook(PreForwardHook(), PreForwardHook())
add_hook_to_module(test_model, test_hook)
output2 = test_model(x)
assert torch.allclose(output2, expected2, atol=1e-5)
def test_post_forward_hook_is_executed(self):
test_model = ModelForTest()
x = torch.randn(2, 3)
output = test_model(x)
test_hook = PostForwardHook()
add_hook_to_module(test_model, test_hook)
output1 = test_model(x)
assert torch.allclose(output1, (output + 1), atol=1e-5)
# Attaching a hook to a model when it already has one replaces, does not chain
test_hook = PostForwardHook()
add_hook_to_module(test_model, test_hook)
output1 = test_model(x)
assert torch.allclose(output1, (output + 1), atol=1e-5)
# You need to use the sequential hook to chain two or more hooks
test_hook = SequentialHook(PostForwardHook(), PostForwardHook())
add_hook_to_module(test_model, test_hook)
output2 = test_model(x)
assert torch.allclose(output2, output + 2, atol=1e-5)
def test_no_grad_in_hook(self):
test_model = ModelForTest()
x = torch.randn(2, 3)
output = test_model(x)
test_hook = PostForwardHook()
add_hook_to_module(test_model, test_hook)
output1 = test_model(x)
assert torch.allclose(output1, (output + 1))
assert output1.requires_grad
test_hook.no_grad = True
output1 = test_model(x)
assert not output1.requires_grad
@require_multi_device
def test_align_devices_as_model_parallelism(self):
model = ModelForTest()
# Everything is on CPU
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# This will move each submodule on different devices
add_hook_to_module(model.linear1, AlignDevicesHook(execution_device=0))
add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0))
add_hook_to_module(model.linear2, AlignDevicesHook(execution_device=1))
assert model.linear1.weight.device == torch.device(torch_device)
assert model.batchnorm.weight.device == torch.device(torch_device)
assert model.batchnorm.running_mean.device == torch.device(torch_device)
assert model.linear2.weight.device == torch.device(torch_device.replace(":0", ":1"))
# We can still make a forward pass. The input does not need to be on any particular device
x = torch.randn(2, 3)
output = model(x)
assert output.device == torch.device(torch_device.replace(":0", ":1"))
# We can add a general hook to put back output on same device as input.
add_hook_to_module(model, AlignDevicesHook(io_same_device=True))
x = torch.randn(2, 3).to(torch_device)
output = model(x)
assert output.device == torch.device(torch_device)
def test_align_devices_as_cpu_offload(self):
model = ModelForTest()
# Everything is on CPU
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# This will move each submodule on different devices
hook_kwargs = {"execution_device": torch_device, "offload": True}
add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs))
add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs))
add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs))
# Parameters have been offloaded, so on the meta device
assert model.linear1.weight.device == torch.device("meta")
assert model.batchnorm.weight.device == torch.device("meta")
assert model.linear2.weight.device == torch.device("meta")
# Buffers are not included in the offload by default, so are on the execution device
device = torch.device(hook_kwargs["execution_device"])
assert model.batchnorm.running_mean.device == device
x = torch.randn(2, 3)
output = model(x)
assert output.device == device
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.linear1)
remove_hook_from_module(model.batchnorm)
remove_hook_from_module(model.linear2)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# Now test with buffers included in the offload
hook_kwargs = {
"execution_device": torch_device,
"offload": True,
"offload_buffers": True,
}
add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs))
add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs))
add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs))
# Parameters have been offloaded, so on the meta device, buffers included
assert model.linear1.weight.device == torch.device("meta")
assert model.batchnorm.weight.device == torch.device("meta")
assert model.linear2.weight.device == torch.device("meta")
assert model.batchnorm.running_mean.device == torch.device("meta")
x = torch.randn(2, 3)
output = model(x)
assert output.device == device
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.linear1)
remove_hook_from_module(model.batchnorm)
remove_hook_from_module(model.linear2)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
def test_attach_align_device_hook_as_cpu_offload(self):
model = ModelForTest()
# Everything is on CPU
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# This will move each submodule on different devices
execution_device = torch_device
attach_align_device_hook(model, execution_device=execution_device, offload=True)
# Parameters have been offloaded, so on the meta device
assert model.linear1.weight.device == torch.device("meta")
assert model.batchnorm.weight.device == torch.device("meta")
assert model.linear2.weight.device == torch.device("meta")
# Buffers are not included in the offload by default, so are on the execution device
device = torch.device(execution_device)
assert model.batchnorm.running_mean.device == device
x = torch.randn(2, 3)
output = model(x)
assert output.device == device
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(model)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# Now test with buffers included in the offload
attach_align_device_hook(model, execution_device=execution_device, offload=True, offload_buffers=True)
# Parameters have been offloaded, so on the meta device, buffers included
assert model.linear1.weight.device == torch.device("meta")
assert model.batchnorm.weight.device == torch.device("meta")
assert model.linear2.weight.device == torch.device("meta")
assert model.batchnorm.running_mean.device == torch.device("meta")
x = torch.randn(2, 3)
output = model(x)
assert output.device == device
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(model)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
def test_attach_align_device_hook_as_cpu_offload_with_weight_map(self):
model = ModelForTest()
# Everything is on CPU
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# This will move each submodule on different devices
execution_device = torch_device
attach_align_device_hook(
model, execution_device=execution_device, offload=True, weights_map=model.state_dict()
)
# Parameters have been offloaded, so on the meta device
assert model.linear1.weight.device == torch.device("meta")
assert model.batchnorm.weight.device == torch.device("meta")
assert model.linear2.weight.device == torch.device("meta")
# Buffers are not included in the offload by default, so are on the execution device
device = torch.device(execution_device)
assert model.batchnorm.running_mean.device == device
x = torch.randn(2, 3)
output = model(x)
assert output.device == device
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(model)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
# Now test with buffers included in the offload
attach_align_device_hook(
model,
execution_device=execution_device,
offload=True,
weights_map=model.state_dict(),
offload_buffers=True,
)
# Parameters have been offloaded, so on the meta device, buffers included
assert model.linear1.weight.device == torch.device("meta")
assert model.batchnorm.weight.device == torch.device("meta")
assert model.linear2.weight.device == torch.device("meta")
assert model.batchnorm.running_mean.device == torch.device("meta")
x = torch.randn(2, 3)
output = model(x)
assert output.device == device
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(model)
assert model.linear1.weight.device == torch.device("cpu")
assert model.batchnorm.weight.device == torch.device("cpu")
assert model.linear2.weight.device == torch.device("cpu")
def test_add_remove_hook_fx_graph_module(self):
with torch.no_grad():
test_model = ModelForTest()
test_hook = ModelHook()
x = torch.randn(2, 3)
output1 = test_model(x)
graph_model = symbolic_trace(test_model)
output2 = graph_model(x)
assert torch.allclose(output1, output2)
add_hook_to_module(graph_model, test_hook)
remove_hook_from_module(graph_model, recurse=True)
# We want to make sure that `add_hook_to_module` and `remove_hook_from_module` yields back an fx.GraphModule
# that behaves correctly (for example that is not frozen, see https://github.com/huggingface/accelerate/pull/2369).
# For that, we add a sigmoid node to the FX graph and make sure that the new output (output3 below) is different than
# the original model's output.
linear2_node = None
for node in graph_model.graph.nodes:
if node.name == "linear2":
linear2_node = node
assert linear2_node is not None
graph_model.graph.inserting_after(linear2_node)
new_node = graph_model.graph.create_node(
op="call_function", target=torch.sigmoid, args=(linear2_node,), name="relu"
)
output_node = None
for node in graph_model.graph.nodes:
if node.name == "output":
output_node = node
assert output_node is not None
output_node.replace_input_with(linear2_node, new_node)
graph_model.graph.lint()
graph_model.recompile()
output3 = graph_model(x)
# Now the output is expected to be different since we modified the graph.
assert not torch.allclose(output1, output3)