forked from OctoberChang/X-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_linear.sh
executable file
·64 lines (53 loc) · 1.83 KB
/
eval_linear.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/bin/bash
DATASET=$1
VERSION=$2
LABEL_EMB=pifa-tfidf
DATA_DIR=./datasets/${DATASET}
PRED_NPZ_PATHS=""
SEED_LIST=( 0 1 2 )
for SEED in "${SEED_LIST[@]}"; do
# indexer (for reproducibility, use clusters from pretrained_dir)
OUTPUT_DIR=pretrained_models/${DATASET}/${LABEL_EMB}-s${SEED}
INDEXER_DIR=${OUTPUT_DIR}/indexer
RANKER_DIR=${OUTPUT_DIR}/ranker/linear-${VERSION}
mkdir -p ${RANKER_DIR}
# ranker train and predict
PRED_NPZ_PATH=${RANKER_DIR}/tst.pred.npz
# x_emb=TF-IDF, model=Parabel
if [ ${VERSION} == 'v0' ]; then
python -m xbert.ranker train \
-x ${DATA_DIR}/X.trn.npz \
-y ${DATA_DIR}/Y.trn.npz \
-c ${INDEXER_DIR}/code.npz \
-o ${RANKER_DIR} -t 0.01
python -m xbert.ranker predict \
-m ${RANKER_DIR} -o ${PRED_NPZ_PATH} \
-x ${DATA_DIR}/X.tst.npz \
-y ${DATA_DIR}/Y.tst.npz
# x_emb=xlnet_finetuned+TF-IDF, model=Parabel
elif [ ${VERSION} == 'v1' ]; then
python -m xbert.ranker train \
-x ${DATA_DIR}/X.trn.npz \
-x2 ${DATA_DIR}/X.trn.finetune.xlnet.npy \
-y ${DATA_DIR}/Y.trn.npz \
-c ${INDEXER_DIR}/code.npz \
-o ${RANKER_DIR} -t 0.01 -f 0
python -m xbert.ranker predict \
-m ${RANKER_DIR} -o ${PRED_NPZ_PATH} \
-x ${DATA_DIR}/X.tst.npz \
-x2 ${DATA_DIR}/X.tst.finetune.xlnet.npy \
-y ${DATA_DIR}/Y.tst.npz -f 0
else
echo 'unknown linear version'
exit
fi
# append all prediction path
PRED_NPZ_PATHS="${PRED_NPZ_PATHS} ${PRED_NPZ_PATH}"
done
# final eval
EVAL_DIR=results_linear
mkdir -p ${EVAL_DIR}
python -u -m xbert.evaluator \
-y datasets/${DATASET}/Y.tst.npz \
-e -p ${PRED_NPZ_PATHS} \
|& tee ${EVAL_DIR}/${DATASET}.${VERSION}.txt