Skip to content

Algorithms and data structures implemented in JavaScript with explanations and links to further readings

License

Notifications You must be signed in to change notification settings

xiaogeneral/javascript-algorithms

Repository files navigation

JavaScript Algorithms and Data Structures

Build Status codecov

This repository contains JavaScript based examples of many popular algorithms and data structures.

Each algorithm and data structure have its own separate README with related explanations and links for further reading and YouTube videos.

Read this in other languages: 简体中文

Data Structures

Data structure is a particular way of organizing and storing data in a computer so that it can be accessed and modified efficiently. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.

Algorithms

Algorithm is an unambiguous specification of how to solve a class of problems. Algorithm is a set of rules that precisely defines a sequence of operations.

Algorithms by Topic

Algorithms by Paradigm

An algorithmic paradigm is a generic method or approach which underlies the design of a class of algorithms. It is an abstraction higher than the notion of an algorithm, just as an algorithm is an abstraction higher than a computer program.

How to use this repository

Install all dependencies

npm install

Run all tests

npm test

Run tests by name

npm test -- -t 'LinkedList'

Playground

You may play with data-structures and algorithms in ./src/playground/playground.js file and write tests for it in ./src/playground/__test__/playground.test.js.

Then just simply run the following command to test if your playground code works as expected:

npm test -- -t 'playground'

Useful Information

References

▶ Data Structures and Algorithms on YouTube

Big O Notation

Order of growth of algorithms specified in Big O notation.

Big O graphs

Source: Big O Cheat Sheet.

Below is the list of some of the most used Big O notations and their performance comparisons against different sizes of the input data.

Big O Notation Computations for 10 elements Computations for 100 elements Computations for 1000 elements
O(1) 1 1 1
O(log N) 3 6 9
O(N) 10 100 1000
O(N log N) 30 600 9000
O(N^2) 100 10000 1000000
O(2^N) 1024 1.26e+29 1.07e+301
O(N!) 3628800 9.3e+157 4.02e+2567

Data Structure Operations Complexity

Data Structure Access Search Insertion Deletion Comments
Array 1 n n n
Stack n n 1 1
Queue n n 1 1
Linked List n n 1 1
Hash Table - n n n In case of perfect hash function costs would be O(1)
Binary Search Tree n n n n
B-Tree log(n) log(n) log(n) log(n)
Red-Black Tree log(n) log(n) log(n) log(n)
AVL Tree log(n) log(n) log(n) log(n)

Array Sorting Algorithms Complexity

Name Best Average Worst Memory Stable
Bubble sort n n^2 n^2 1 Yes
Insertion sort n n^2 n^2 1 Yes
Selection sort n^2 n^2 n^2 1 No
Heap sort n log(n) n log(n) n log(n) 1 No
Merge sort n log(n) n log(n) n log(n) n Yes
Quick sort n log(n) n log(n) n^2 log(n) No
Shell sort n log(n) depends on gap sequence n (log(n))^2 1 No

About

Algorithms and data structures implemented in JavaScript with explanations and links to further readings

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 100.0%