-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcuda_quark_compactionTest.cu
319 lines (260 loc) · 9.99 KB
/
cuda_quark_compactionTest.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
#include <sm_30_intrinsics.h>
static uint32_t *d_tempBranch1Nonces[MAX_GPUS];
static uint32_t *d_numValid[MAX_GPUS];
static uint32_t *h_numValid[MAX_GPUS];
static uint32_t *d_partSum[2][MAX_GPUS]; // fuer bis zu vier partielle Summen
// True/False tester
typedef uint32_t(*cuda_compactTestFunction_t)(const uint32_t *inpHash);
__device__ __forceinline__ uint32_t QuarkTrueTest(const uint32_t *inpHash)
{
return ((inpHash[0] & 0x08) == 0x08);
}
__device__ __forceinline__ uint32_t QuarkFalseTest(const uint32_t *inpHash)
{
return ((inpHash[0] & 0x08) == 0);
}
__device__ cuda_compactTestFunction_t d_QuarkTrueFunction = QuarkTrueTest, d_QuarkFalseFunction = QuarkFalseTest;
cuda_compactTestFunction_t h_QuarkTrueFunction[MAX_GPUS], h_QuarkFalseFunction[MAX_GPUS];
// Setup-Funktionen
__host__ void quark_compactTest_cpu_init(int thr_id, uint32_t threads)
{
CUDA_SAFE_CALL(cudaMemcpyFromSymbolAsync(&h_QuarkTrueFunction[thr_id], d_QuarkTrueFunction, sizeof(cuda_compactTestFunction_t), 0, cudaMemcpyDeviceToHost, gpustream[thr_id]));
CUDA_SAFE_CALL(cudaMemcpyFromSymbolAsync(&h_QuarkFalseFunction[thr_id], d_QuarkFalseFunction, sizeof(cuda_compactTestFunction_t), 0, cudaMemcpyDeviceToHost, gpustream[thr_id]));
// wir brauchen auch Speicherplatz auf dem Device
CUDA_SAFE_CALL(cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads * 2));
CUDA_SAFE_CALL(cudaMalloc(&d_numValid[thr_id], 2 * sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaMallocHost(&h_numValid[thr_id], 2 * sizeof(uint32_t)));
uint32_t s1;
s1 = (threads / 256) * 2;
CUDA_SAFE_CALL(cudaMalloc(&d_partSum[0][thr_id], sizeof(uint32_t) * s1)); // BLOCKSIZE (Threads/Block)
CUDA_SAFE_CALL(cudaMalloc(&d_partSum[1][thr_id], sizeof(uint32_t) * s1)); // BLOCKSIZE (Threads/Block)
}
// Die Summenfunktion (vom NVIDIA SDK)
__global__ void quark_compactTest_gpu_SCAN(uint32_t *data, int width, uint32_t *partial_sums=NULL, cuda_compactTestFunction_t testFunc=NULL, uint32_t threads=0, uint32_t startNounce=0, const uint32_t *inpHashes=NULL, const uint32_t *d_validNonceTable=NULL)
{
__shared__ uint32_t sums[32];
int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
//int lane_id = id % warpSize;
int lane_id = id % width;
// determine a warp_id within a block
//int warp_id = threadIdx.x / warpSize;
int warp_id = threadIdx.x / width;
sums[lane_id] = 0;
// Below is the basic structure of using a shfl instruction
// for a scan.
// Record "value" as a variable - we accumulate it along the way
uint32_t value;
if(testFunc != NULL)
{
if (id < threads)
{
if(d_validNonceTable == NULL)
{
// keine Nonce-Liste
value = (*testFunc)(&inpHashes[id << 4]);
}else
{
// Nonce-Liste verfügbar
int nonce = d_validNonceTable[id] - startNounce;
value = (*testFunc)(&inpHashes[nonce << 4]);
}
}else
{
value = 0;
}
}else
{
value = data[id];
}
__syncthreads();
// Now accumulate in log steps up the chain
// compute sums, with another thread's value who is
// distance delta away (i). Note
// those threads where the thread 'i' away would have
// been out of bounds of the warp are unaffected. This
// creates the scan sum.
#pragma unroll
for (int i=1; i<=width; i*=2)
{
uint32_t n = __shfl_up((int)value, i, width);
if (lane_id >= i) value += n;
}
// value now holds the scan value for the individual thread
// next sum the largest values for each warp
// write the sum of the warp to smem
//if (threadIdx.x % warpSize == warpSize-1)
if (threadIdx.x % width == width-1)
{
sums[warp_id] = value;
}
__syncthreads();
//
// scan sum the warp sums
// the same shfl scan operation, but performed on warp sums
//
if (warp_id == 0)
{
uint32_t warp_sum = sums[lane_id];
for (int i=1; i<=width; i*=2)
{
uint32_t n = __shfl_up((int)warp_sum, i, width);
if (lane_id >= i) warp_sum += n;
}
sums[lane_id] = warp_sum;
}
__syncthreads();
// perform a uniform add across warps in the block
// read neighbouring warp's sum and add it to threads value
uint32_t blockSum = 0;
if (warp_id > 0)
{
blockSum = sums[warp_id-1];
}
value += blockSum;
// Now write out our result
data[id] = value;
// last thread has sum, write write out the block's sum
if (partial_sums != NULL && threadIdx.x == blockDim.x-1)
{
partial_sums[blockIdx.x] = value;
}
}
// Uniform add: add partial sums array
__global__ void quark_compactTest_gpu_ADD(uint32_t *data, const uint32_t *partial_sums, int len)
{
__shared__ uint32_t buf;
int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
if (id > len) return;
if (threadIdx.x == 0)
{
buf = partial_sums[blockIdx.x];
}
__syncthreads();
data[id] += buf;
}
// Der Scatter
__global__ void quark_compactTest_gpu_SCATTER(const uint32_t *sum, uint32_t *outp, cuda_compactTestFunction_t testFunc, uint32_t threads=0, uint32_t startNounce=0, const uint32_t *inpHashes=NULL, const uint32_t *d_validNonceTable=NULL)
{
int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
uint32_t actNounce = id;
uint32_t value;
if (id < threads)
{
// const uint32_t nounce = startNounce + id;
if(d_validNonceTable == NULL)
{
// keine Nonce-Liste
value = (*testFunc)(&inpHashes[id << 4]);
}else
{
// Nonce-Liste verfügbar
int nonce = d_validNonceTable[id] - startNounce;
actNounce = nonce;
value = (*testFunc)(&inpHashes[nonce << 4]);
}
}else
{
value = 0;
}
if( value )
{
int idx = sum[id];
if(idx > 0)
outp[idx-1] = startNounce + actNounce;
}
}
__host__ static uint32_t quark_compactTest_roundUpExp(uint32_t val)
{
if(val == 0)
return 0;
uint32_t mask = 0x80000000;
while( (val & mask) == 0 ) mask = mask >> 1;
if( (val & (~mask)) != 0 )
return mask << 1;
return mask;
}
__host__ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32_t *nrm,
uint32_t *d_nonces1, cuda_compactTestFunction_t function,
uint32_t startNounce, const uint32_t *inpHashes, const uint32_t *d_validNonceTable)
{
int orgThreads = threads;
threads = (int)quark_compactTest_roundUpExp((uint32_t)threads);
// threadsPerBlock ausrechnen
int blockSize = 256;
int nSummen = threads / blockSize;
int thr1 = (threads+blockSize-1) / blockSize;
int thr2 = threads / (blockSize*blockSize);
int blockSize2 = (nSummen < blockSize) ? nSummen : blockSize;
int thr3 = (nSummen + blockSize2-1) / blockSize2;
bool callThrid = (thr2 > 0) ? true : false;
// Erster Initialscan
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 0, gpustream[thr_id]>>>(d_tempBranch1Nonces[thr_id], 32, d_partSum[0][thr_id], function, orgThreads, startNounce, inpHashes, d_validNonceTable);
CUDA_SAFE_CALL(cudaGetLastError());
// weitere Scans
if(callThrid)
{
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 0, gpustream[thr_id]>>>(d_partSum[0][thr_id], 32, d_partSum[1][thr_id]);
CUDA_SAFE_CALL(cudaGetLastError());
quark_compactTest_gpu_SCAN << <1, thr2, 0, gpustream[thr_id] >> >(d_partSum[1][thr_id], (thr2>32) ? 32 : thr2);
CUDA_SAFE_CALL(cudaGetLastError());
}
else
{
quark_compactTest_gpu_SCAN<<<thr3,blockSize2, 0, gpustream[thr_id]>>>(d_partSum[0][thr_id], (blockSize2>32) ? 32 : blockSize2);
CUDA_SAFE_CALL(cudaGetLastError());
}
if(callThrid)
{
cudaMemcpyAsync(nrm, &(d_partSum[1][thr_id])[thr2 - 1], sizeof(uint32_t), cudaMemcpyDeviceToHost, gpustream[thr_id]);
CUDA_SAFE_CALL(cudaGetLastError());
}
else
{
cudaMemcpyAsync(nrm, &(d_partSum[0][thr_id])[nSummen - 1], sizeof(uint32_t), cudaMemcpyDeviceToHost, gpustream[thr_id]);
CUDA_SAFE_CALL(cudaGetLastError());
}
// Addieren
if(callThrid)
{
quark_compactTest_gpu_ADD<<<thr2-1, blockSize, 0, gpustream[thr_id]>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2);
CUDA_SAFE_CALL(cudaGetLastError());
}
quark_compactTest_gpu_ADD<<<thr1-1, blockSize, 0, gpustream[thr_id]>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads);
CUDA_SAFE_CALL(cudaGetLastError());
// Scatter
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0, gpustream[thr_id]>>>(d_tempBranch1Nonces[thr_id], d_nonces1,
function, orgThreads, startNounce, inpHashes, d_validNonceTable);
CUDA_SAFE_CALL(cudaGetLastError());
cudaStreamSynchronize(gpustream[thr_id]);
}
////// ACHTUNG: Diese funktion geht aktuell nur mit threads > 65536 (Am besten 256 * 1024 oder 256*2048)
__host__ void quark_compactTest_cpu_dualCompaction(int thr_id, uint32_t threads, uint32_t *nrm,
uint32_t *d_nonces1, uint32_t *d_nonces2,
uint32_t startNounce, const uint32_t *inpHashes, const uint32_t *d_validNonceTable)
{
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[0], d_nonces1, h_QuarkTrueFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[1], d_nonces2, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
}
__host__ void quark_compactTest_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, const uint32_t *inpHashes, const uint32_t *d_validNonceTable,
uint32_t *d_nonces1, uint32_t *nrm1,
uint32_t *d_nonces2, uint32_t *nrm2)
{
// Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind
// "threads" ist in diesem Fall auf die Länge dieses Array's zu setzen!
quark_compactTest_cpu_dualCompaction(thr_id, threads,
h_numValid[thr_id], d_nonces1, d_nonces2,
startNounce, inpHashes, d_validNonceTable);
*nrm1 = h_numValid[thr_id][0];
*nrm2 = h_numValid[thr_id][1];
}
__host__ void quark_compactTest_single_false_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable,
uint32_t *d_nonces1, uint32_t *nrm1)
{
// Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind
// "threads" ist in diesem Fall auf die Länge dieses Array's zu setzen!
quark_compactTest_cpu_singleCompaction(thr_id, threads, h_numValid[thr_id], d_nonces1, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
*nrm1 = h_numValid[thr_id][0];
}