forked from denti/AlexNet3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAlexNet_3dConv.py
167 lines (111 loc) · 5.5 KB
/
AlexNet_3dConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import tensorflow as tf
# Path to 3d tensor. Tensor.shape is (111,111,111)
tensor_path = 'path/to/tensor/'
X = np.load(tensor_path + 'x.npz')['x'].reshape((-1, 111, 111, 111, 1))
Y = np.load(tensor_path + 'y.npz')['y']
# Accuracy function
def get_accuracy(predictions, labels):
return 100 * tf.reduce_mean(tf.cast(tf.equal(tf.argmax(predictions,1), tf.argmax(labels,1)), tf.float32))
# Graph
batch_size = 1000
num_labels = 10
graph = tf.Graph()
with graph.as_default():
predict = tf.Variable(False)
# Input data.
tf_train_dataset = tf.placeholder(tf.float32, shape=(None, 111, 111, 111, 1))
tf_train_labels = tf.placeholder(tf.float32, shape=(None, num_labels))
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[9, 9, 9, 1, 96], stddev=0.1))
layer1_biases = tf.Variable(tf.zeros([96]))
layer2_weights = tf.Variable(tf.truncated_normal(
[5, 5, 5, 96, 256], stddev=0.1))
layer2_biases = tf.Variable(tf.constant(1.0, shape=[256]))
layer3_weights = tf.Variable(tf.truncated_normal(
[3, 3, 3, 256, 384], stddev=0.1))
layer3_biases = tf.Variable(tf.constant(1.0, shape=[384]))
layer4_weights = tf.Variable(tf.truncated_normal(
[3, 3, 3, 384, 384], stddev=0.1))
layer4_biases = tf.Variable(tf.constant(1.0, shape=[384]))
layer5_weights = tf.Variable(tf.truncated_normal(
[3, 3, 3, 384, 256], stddev=0.1))
layer5_biases = tf.Variable(tf.constant(1.0, shape=[256]))
layer6_weights = tf.Variable(tf.truncated_normal(
[49*49*256, 4096], stddev=0.1))
layer6_biases = tf.Variable(tf.constant(1.0, shape=[4096]))
layer7_weights = tf.Variable(tf.truncated_normal(
[4096, 4096], stddev=0.1))
layer7_biases = tf.Variable(tf.constant(1.0, shape=[4096]))
layer8_weights = tf.Variable(tf.truncated_normal(
[4096, num_labels], stddev=0.1))
layer8_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
#MODEL
def model(data):
# Conv1
conv1 = tf.nn.conv3d(data, layer1_weights, [1, 4, 4, 4, 1], padding='SAME')
hidden1 = tf.nn.relu(conv1 + layer1_biases)
#Pool1
pool1 = tf.nn.max_pool3d(hidden1, ksize=[1, 3, 3, 3, 1], strides=[1, 2, 2, 2, 1], padding='SAME')
# Conv2
conv2 = tf.nn.conv3d(pool1, layer2_weights, [1, 1, 1, 1, 1],padding='SAME')
hidden2 = tf.nn.relu(conv2 + layer2_biases)
# Conv3
conv3 = tf.nn.conv3d(hidden2, layer3_weights, [1, 1, 1, 1, 1],padding='SAME')
# Conv4
conv4 = tf.nn.conv3d(conv3, layer4_weights, [1, 1, 1, 1, 1], padding='SAME')
# Conv5
conv5 = tf.nn.conv3d(conv4, layer5_weights, [1, 1, 1, 1, 1], padding='SAME')
#Pool2
pool2 = tf.nn.max_pool3d(conv5, ksize=[1, 3, 3, 3, 1], strides=[1, 2, 2, 2, 1], padding='SAME')
normalize3_flat = tf.reshape(pool2, [-1, 49*49*256])
#FC1
fc1 = tf.tanh(tf.add(tf.matmul(normalize3_flat, layer6_weights), layer6_biases))
dropout1 = tf.nn.dropout(fc1, 0.5)
#FC2
fc2 = tf.tanh(tf.add(tf.matmul(dropout1, layer7_weights), layer7_biases))
dropout2 = tf.nn.dropout(fc2, 0.5)
#FC3
res = tf.nn.softmax(tf.add(tf.matmul(dropout2, layer8_weights), layer8_biases))
return res
# Training computation
local_res = model(tf_train_dataset)
with tf.name_scope("cost_function") as scope:
cross_entropy = tf.reduce_mean(-tf.reduce_sum(tf_train_labels * tf.log(local_res), reduction_indices=[1]))
tf.scalar_summary("cost_function", cross_entropy)
# Optimizer
train_step = tf.train.MomentumOptimizer(0.0014, 0.9).minimize(cross_entropy)
# Predictions for the training, validation, and test data
with tf.name_scope("accuracy") as scope:
accuracy = get_accuracy(local_res, tf_train_labels)
tf.scalar_summary("accuracy", accuracy)
valid_prediction = tf.nn.softmax(model(tf_train_dataset))
print ('Graph was built')
merged_summary_op = tf.merge_all_summaries()
# Session
epochs = 100
steps_per_epoch = int(Y.shape[0]/batch_size) + 1
print ('STEPS %d' % steps_per_epoch)
with tf.Session(graph=graph) as session:
session.run(tf.initialize_all_variables())
for epch in xrange(0, epochs):
print ('EPOCH %d' % epch)
for step in range(steps_per_epoch):
offset = (step * batch_size) % (Y.shape[0] - batch_size)
# Generate a minibatch.
batch_data = X[np.arange(offset,(offset + batch_size))].astype('float32')
batch_labels = Y[offset:(offset + batch_size), :]
train_step.run(feed_dict={tf_train_dataset: batch_data, tf_train_labels: batch_labels})
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary_str, _ = session.run([merged_summary_op, train_step],
feed_dict={tf_train_dataset: batch_data, tf_train_labels: batch_labels},
options=run_options,
run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%03d' % (int(step)+(steps_per_epoch * (epch+1))))
train_writer.add_summary(summary_str, step)
train_accuracy = accuracy.eval(feed_dict={
tf_train_dataset:batch_data, tf_train_labels: batch_labels})
print("Step %d" % step)
print("Minibatch accuracy: %.1f%%" % train_accuracy)