forked from maisuiqianxun/STFCM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHFCMCostW123X.m
228 lines (209 loc) · 9.08 KB
/
HFCMCostW123X.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
% function [cost,grad] = HFCMCostW2x(theta, visibleSize, hiddenSize, ...
% lambda, data, order, thetaW1, W3)
function [cost,grad] = HFCMCostW123X(theta, NumSAE, NumHFCM, data, hiddenSize, ...
lambda, Labels, order)
NumSamples = size(data, 2);
Inputlength = size(data, 1);
W1b1length = (Inputlength + 1)* hiddenSize;
% Forward propagation
a0 = data;
% a1 = ; % output of SAE
a1 = [];
for index = 1: NumSAE
W1b1 = theta( 1 + (index - 1) * W1b1length: index * W1b1length);
allSAEvector{1, index} = W1b1;
W1 = reshape(W1b1(1: Inputlength * hiddenSize), hiddenSize, Inputlength);
b1 = W1b1(Inputlength * hiddenSize + 1: Inputlength * hiddenSize + hiddenSize);
locala1 = sigmoid(W1*a0 + repmat(b1,1,size(a0,2)));
a1 = [a1;locala1];
end
Zlength = size(a1, 1);
W3vectorlength = Zlength* (1 + NumHFCM)* size(Labels, 2);
UnitLength = (size(theta, 1)-W3vectorlength - W1b1length * NumSAE)/NumHFCM;
for index = 1 : NumHFCM % defaults NumHFCM
allWFCMvector{1, index} = theta( W1b1length * NumSAE + 1 + (index-1)* UnitLength: W1b1length * NumSAE + index * UnitLength);
end
W3vector = theta( W1b1length * NumSAE + NumHFCM * UnitLength + 1: end);
W3 = reshape(W3vector, Zlength * (1 + NumHFCM), size(Labels, 2));
cost = 0;
% a1 = SAEFeaturesTotal;
Y = Labels';
[a2,a2t] = DataforHFCM(a1,order); % output of training data and target
atemp = [];
atemp = [atemp; a2];
for index = 1 : NumHFCM
thetaInner = allWFCMvector{1, index};
W2 = reshape(thetaInner(1:hiddenSize*NumSAE*hiddenSize*NumSAE), hiddenSize*NumSAE, hiddenSize*NumSAE);
W2set{1, index} = W2;
b2 = thetaInner(hiddenSize*NumSAE*hiddenSize*NumSAE*order+1:end);
Wx = reshape(thetaInner(hiddenSize*NumSAE*hiddenSize*NumSAE+1:hiddenSize*NumSAE*hiddenSize*NumSAE*order), hiddenSize*NumSAE*(order-1), hiddenSize*NumSAE);
a3inner = sigmoid(W2'*a2 + repmat(b2,1,size(a2,2)) + Wx'*a2t); % output of HFCM
atemp = [atemp; a3inner];
end
a4 = W3'*atemp; % output of fianl layer
cost = sum(sum((a4 - Y).^2))/length(Y) + (lambda/2)*(sum(sum(W2.^2)) + sum(sum(Wx.^2)));
fprintf("%f\n", cost);
% Backward propagation
grad = [];
for index = 1 : NumSAE
W1b1 = allSAEvector{1, index};
W1 = reshape(W1b1(1: Inputlength * hiddenSize), hiddenSize, Inputlength);
b1 = W1b1(Inputlength * hiddenSize + 1: Inputlength * hiddenSize + hiddenSize);
a3 = atemp(Zlength + 1: end, :);
a2 = atemp(1: Zlength, :);
a2i = a2(hiddenSize * (index - 1) + 1:hiddenSize * index, :);
W1gradi = zeros(size(W1));
b1gradi = zeros(size(b1));
for u = 1: size(W1gradi, 1)
for v = 1: size(W1gradi, 2)
tempvalue1 = 0;
for a = 1 : size(Y, 1)
for t = 1: size(Y, 2)
vc = v + (index-1)* hiddenSize;
tempvalue1 = tempvalue1 - (Y(a,t) - a4(a,t))*a2i(a,v)*(1-a2i(a,v))*a0(a,u)*W3(vc, a);
end
end
tempvalue2 = 0;
for a = 1 : size(Y, 1)
for t = 1: size(Y, 2)
for jinner = 1 : NumHFCM
Hj = a3((jinner - 1) * Zlength + 1: jinner * Zlength, :);
W2j = W2set{1, jinner};
for lamdainner = 1: Zlength
vb = jinner * Zlength + lamdainner;
r = v + (index-1)* hiddenSize;
tempvalue2 = tempvalue2 - (Y(a,t) - a4(a,t))* a2i(a,v)*(1-a2i(a,v)) * Hj(a, v) * (1-Hj(a, v)) * a0(a,u)* W2j(r, lamdainner)*W3(vb, a);
end
end
end
end
tempvalue = tempvalue1 + tempvalue2;
W1gradi(u, v) = tempvalue;
end
end
for v = 1: size(b1gradi, 2)
tempvalue3 = 0;
for a = 1 : size(Y, 1)
for t = 1: size(Y, 2)
vc = v + (index-1)* hiddenSize;
tempvalue3 = tempvalue3 - (Y(a,t) - a4(a,t))*a2i(a,v)*(1-a2i(a,v))*W3(vc, a);
end
end
tempvalue4 = 0;
for a = 1 : size(Y, 1)
for t = 1: size(Y, 2)
for jinner = 1 : NumHFCM
Hj = a3((jinner - 1) * Zlength + 1: jinner * Zlength, :);
W2j = W2set{1, jinner};
for lamdainner = 1: Zlength
vb = jinner * Zlength + lamdainner;
tempvalue4 = tempvalue4 - (Y(a,t) - a4(a,t))* a2i(a,v)*(1-a2i(a,v)) * Hj(a, v) * (1-Hj(a,v))* W2j(r, lamdainner)*W3(vb, a);
end
end
end
end
tempvalueII = tempvalue3 + tempvalue4;
b1gradi(1, v) = tempvalueII;
end
grad = [grad; W1gradi(:); b1gradi(:)];
end
for index = 1 : NumHFCM
thetaInner = allWFCMvector{1, index};
W2 = reshape(thetaInner(1:hiddenSize*NumSAE*hiddenSize*NumSAE), hiddenSize*NumSAE, hiddenSize*NumSAE);
b2 = thetaInner(hiddenSize*NumSAE*hiddenSize*NumSAE*order+1:end);
Wx = reshape(thetaInner(hiddenSize*NumSAE*hiddenSize*NumSAE+1:hiddenSize*NumSAE*hiddenSize*NumSAE*order), hiddenSize*NumSAE*(order-1), hiddenSize*NumSAE);
% W2grad = zeros(size(W2));
% b2grad = zeros(size(b2));
% Wxgrad = zeros(size(Wx));
a3inner = sigmoid(W2'*a2 + repmat(b2,1,size(a2,2)) + Wx'*a2t); % output of HFCM
% atemp = [atemp; a3inner];
W3Hindex = W3(hiddenSize*NumSAE*index + 1:hiddenSize*NumSAE*(index + 1), :);
del2 = -2*(Y - a4).*sum(a3inner.*(1-a3inner))/length(Y);
del1 = [];
for i = 1: size(del2, 1)
del1 = [del1, del2(i, :)];
end
d2 = [];
for i = 1: size(W3Hindex, 2)
d2 = [d2, repmat(W3Hindex(:, i), hiddenSize*NumSAE, size(a3inner,2))];
end
d1 = [];
for i = 1:hiddenSize*NumSAE
d1 = [d1; repmat(a2(i,:),hiddenSize*NumSAE, size(Y, 1))];
end
temp = repmat(del1,hiddenSize*NumSAE*hiddenSize*NumSAE,1).*(d1.*d2);
temp1 = reshape(sum(temp,2),hiddenSize*NumSAE,hiddenSize*NumSAE);
W2grad = temp1'+ (lambda*W2);
b2grad = sum(W3Hindex*del2,2);
Wxgrad = [];
for i = 1:order-1
at = a2t((i-1)*hiddenSize*NumSAE+1:i*hiddenSize*NumSAE,:);
d2 = [];
for j = 1: size(W3Hindex, 2)
d2 = [d2, repmat(W3Hindex(:, j), hiddenSize*NumSAE, size(a3inner,2))];
end
d1 = [];
for j = 1:hiddenSize*NumSAE
d1 = [d1; repmat(at(j,:),hiddenSize*NumSAE, size(Y, 1))];
end
temp = repmat(del1,hiddenSize*NumSAE*hiddenSize*NumSAE,1).*(d1.*d2);
temp1 = reshape(sum(temp,2),hiddenSize*NumSAE,hiddenSize*NumSAE);
Wxgrad = [Wxgrad; temp1'];
end
Wxgrad = Wxgrad + (lambda*Wx);
grad = [grad; W2grad(:) ; Wxgrad(:) ; b2grad(:)];
end
W3grad = zeros(size(W3));
for u = 1: size(W3grad, 1)
for v = 1 : size(W3grad, 2)
W3grad(u, v) = (Y(v, :)- a4(v, :))* atemp(u, :)';
end
end
grad = [grad; W3grad(:)];
% Cost and gradient variables (your code needs to compute these values).
% Here, we initialize them to zeros.
%% ---------- YOUR CODE HERE --------------------------------------
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%recode the BP of the WHFCMs%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for p = 1 : (hiddenSize*NumSAE)
% for q = 1 : hiddenSize*NumSAE
% innerV = 0;
% innerB = 0;
% for i = 1 : size(Y, 1)
% for j = 1 : size(Y, 2)
% for m = 1 : hiddenSize*NumSAE
% innerV = innerV + 2 * (a4(i, j)-Y(i, j)) * W3Hindex(m, i) * a3(m, j) * (1 - a3(m, j)) * a2(q, j);
% innerB = innerB + (a4(i, j)-Y(i, j)) * W3Hindex(m, i) * a3(m, j) * (1 - a3(m, j));
% end
% end
% end
% W2grad(p, q) = innerV;
% b2grad(p) = innerB;
% end
% end
% W2grad = W2grad + (lambda*W2);
% for p = 1 : hiddenSize*NumSAE
% for q = 1 : hiddenSize*NumSAE * (order - 1)
% innerV2 = 0;
% for i = 1 : size(Y, 1)
% for j = 1 : size(Y, 2)
% for m = 1 : hiddenSize*NumSAE
% innerV2 = innerV2 + 2 * (a4(i, j)-Y(i, j)) * W3Hindex(m, i) * a3(m, j) * (1 - a3(m, j)) * a2t(q, j);
% end
% end
% end
% Wxgrad(q, p) = innerV;
% end
% end
% Wxgrad = Wxgrad + (lambda*Wx);
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wxgrad = Wxgrad;
end
%-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients. This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)).
function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end