Follow the steps in the documentation to build and install Kudu from source
The script thirdparty/build-if-necessary.sh
is invoked by cmake, so
new thirdparty dependencies added by other developers will be downloaded
and built automatically in subsequent builds if necessary.
To disable the automatic invocation of build-if-necessary.sh
, set the
NO_REBUILD_THIRDPARTY
environment variable:
$ NO_REBUILD_THIRDPARTY=1 cmake .
This can be particularly useful when trying to run tools like git bisect
between two commits which may have different dependencies.
# Add <root of kudu tree>/thirdparty/installed/bin to your $PATH
# before other parts of $PATH that may contain cmake, such as /usr/bin
# For example: "export PATH=$HOME/git/kudu/thirdparty/installed/bin:$PATH"
# if using bash
$ cmake .
$ make -j8 # or whatever level of parallelism your machine can handle
The build artifacts, including the test binaries, will be stored in build/latest/, which itself is a symlink to a build-type specific directory such as build/debug or build/release.
To omit the Kudu unit tests during the build, add -DNO_TESTS=1 to the invocation of cmake. For example:
$ cmake -DNO_TESTS=1 .
To run the Kudu unit tests, you can use the ctest
command from within the
root of the Kudu repository:
$ ctest -j8
This command will report any tests that failed, and the test logs will be written to build/test-logs.
Individual tests can be run by directly invoking the test binaries in build/latest. Since Kudu uses the Google C++ Test Framework (gtest), specific test cases can be run with gtest flags:
# List all the tests within a test binary, then run a single test
$ ./build/latest/tablet-test --gtest_list_tests
$ ./build/latest/tablet-test --gtest_filter=TestTablet/9.TestFlush
gtest also allows more complex filtering patterns. See the upstream documentation for more details.
AddressSanitizer is a nice clang feature which can detect many types of memory
errors. The Jenkins setup for kudu runs these tests automatically on a regular
basis, but if you make large changes it can be a good idea to run it locally
before pushing. To do so, you’ll need to build using clang
:
$ rm -Rf CMakeCache.txt CMakeFiles/
$ CC=$(pwd)/thirdparty/clang-toolchain/bin/clang \
CXX=$(pwd)/thirdparty/clang-toolchain/bin/clang++ \
cmake -DKUDU_USE_ASAN=1 .
$ make -j8
$ make test
The tests will run significantly slower than without ASAN enabled, and if any memory error occurs, the test that triggered it will fail. You can then use a command like:
$ build/latest/failing-test 2>&1 | thirdparty/asan_symbolize.py | c++filt | less
to get a proper symbolized stack trace.
Note
|
For more information on AddressSanitizer, please see the ASAN web page. |
Similar to the above, you can use a special set of clang flags to enable the Undefined
Behavior Sanitizer. This will generate errors on certain pieces of code which may
not themselves crash but rely on behavior which isn’t defined by the C++ standard
(and thus are likely bugs). To enable UBSAN, follow the same directions as for
ASAN above, but pass the -DKUDU_USE_UBSAN=1
flag to the cmake
invocation.
In order to get a stack trace from UBSan, you can use gdb on the failing test, and set a breakpoint as follows:
(gdb) b __ubsan::Diag::~Diag
Then, when the breakpoint fires, gather a backtrace as usual using the bt
command.
You can also run the tests with a tcmalloc feature that prints an error message and aborts if it detects memory leaks in your program.
$ rm -Rf CMakeCache.txt CMakeFiles/
$ cmake .
$ make -j
$ # Note: LP_BIND_NOW=1 required below, see: https://code.google.com/p/gperftools/issues/detail?id=497
$ PPROF_PATH=thirdparty/installed/bin/pprof HEAPCHECK=normal LD_BIND_NOW=1 ctest -j8
Note
|
For more information on the heap checker, please see: http://google-perftools.googlecode.com/svn/trunk/doc/heap_checker.html |
Note
|
The AddressSanitizer doesn’t play nice with tcmalloc, so sadly the HEAPCHECK environment has no effect if you have enabled ASAN. However, recent versions of ASAN will also detect leaks, so the tcmalloc leak checker is of limited utility. |
ThreadSanitizer (TSAN) is a clang feature which can detect improperly synchronized access to data
along with many other threading bugs. To enable TSAN, pass -DKUDU_USE_TSAN=1
to the cmake
invocation, recompile, and run tests.
-
Enabling TSAN supressions while running tests
Note that we rely on a list of runtime suppressions in build-support/tsan-suppressions.txt. If you simply run a unit test like build/latest/foo-test, you won’t get these suppressions. Instead, use a command like:
$ ctest -R foo-test
…and then view the logs in build/test-logs/
In order for all of the suppressions to work, you need libraries with debug symbols installed, particularly for libstdc+\+. On Ubuntu 13.10, the package libstdc++6-4.8-dbg is needed for TSAN builds to pass. It’s not a bad idea to install debug symbol packages for libboost, libc, and cyrus-sasl as well.
TSAN may truncate a few lines of the stack trace when reporting where the error is. This can be bewildering. It’s documented for TSANv1 here: http://code.google.com/p/data-race-test/wiki/ThreadSanitizerAlgorithm It is not mentioned in the documentation for TSANv2, but has been observed. In order to find out what is really happening, set a breakpoint on the TSAN report in GDB using the following incantation:
$ gdb -ex 'set disable-randomization off' -ex 'b __tsan::PrintReport' ./some-test
In order to generate a code coverage report, you must build with gcc (not clang) and use the following flags:
$ cmake -DKUDU_GENERATE_COVERAGE=1 .
$ make -j4
$ ctest -j4
This will generate the code coverage files with extensions .gcno and .gcda. You can then
use a tool like lcov
or gcovr
to visualize the results. For example, using gcovr:
$ mkdir cov_html
$ ./thirdparty/gcovr-3.0/scripts/gcovr -r src/
Or using lcov
(which seems to produce better HTML output):
$ lcov --capture --directory src --output-file coverage.info
$ genhtml coverage.info --output-directory out
Kudu uses cpplint.py from Google to enforce coding style guidelines. You can run the
lint checks via cmake using the ilint
target:
$ make ilint
This will scan any file which is dirty in your working tree, or changed since the last
gerrit-integrated upstream change in your git log. If you really want to do a full
scan of the source tree, you may use the lint
target instead.
Kudu’s documentation is written in asciidoc and lives in the docs subdirectory.
To build the documentation, use the docs
target:
$ make docs
This will invoke asciidoctor
to process the doc sources and produce the HTML
documentation, emitted to build/docs. The target expects to find asciidoctor
on the system path. To install it, make sure you have Ruby installed first, then
issue the following command as root:
$ gem install asciidoctor
Or, if you’d prefer to install asciidoctor without root, do:
$ gem install --user-install asciidoctor
If asciidoctor is installed in your user directory, it probably won’t be found
in your PATH
. You’ll need to modify PATH
when building the docs, using
something like this (make sure to replace 2.1.0 with your Ruby version):
$ PATH=$HOME/.gem/ruby/2.1.0/bin:$PATH make docs
To update the documentation that is integrated into the Kudu web site, you need to first check out another copy of this repository, with the 'gh-pages' branch checked out.
For example, you can check out a shallow clone which shares its objects with your main repository using a command like:
$ git clone $(git config --get remote.origin.url) --reference $(pwd) -b gh-pages --depth 1 /tmp/kudu-pages
Additionally, you’ll need to ensure that the tilt
and jekyll
Ruby gems are
installed on your machine. Refer to the asciidoctor
instructions above for
instructions.
Now you can build the docs and pass the path to this checked-out repository:
$ ./docs/support/scripts/make_docs.sh --site /tmp/kudu-pages/
You can proceed to commit the changes in the pages repository and send a code review for your changes. In the future, this step will be automated whenever changes are checked into the main Kudu repository.
The kudu build is compatible with ccache. Simply install your distro’s ccache package,
prepend /usr/lib/ccache to your PATH
, and watch your object files get cached. Link
times won’t be affected, but you will see a noticeable improvement in compilation
times. You may also want to increase the size of your cache using "ccache -M new_size".
One of the major time sinks in the Kudu build is linking. GNU ld is historically
quite slow at linking large C++ applications. The alternative linker gold
is much
better at it. It’s part of the binutils
package in modern distros (try binutils-gold
in older ones). To enable it, simply repoint the /usr/bin/ld symlink from ld.bfd
to
ld.gold
.
Note that gold doesn’t handle weak symbol overrides properly (see this bug report for details). As such, it cannot be used with shared objects (see below) because it’ll cause tcmalloc’s alternative malloc implementation to be ignored.
Kudu can be built into shared objects, which, when used with ccache, can result in a
dramatic build time improvement in the steady state. Even after a make clean
in the build
tree, all object files can be served from ccache. By default, debug
and fastdebug
will
use dynamic linking, while other build types will use static linking. To enable
dynamic linking explicitly, run:
$ cmake -DKUDU_LINK=dynamic .
Subsequent builds will create shared objects instead of archives and use them when
linking the kudu binaries and unit tests. The full range of options for KUDU_LINK
are
static
, dynamic
, and auto
. The default is auto
and only the first letter
matters for the purpose of matching.
Note
|
Dynamic linking is incompatible with ASAN and static linking is incompatible with TSAN. |
Eclipse can be used as an IDE for Kudu. To generate Eclipse project files, run:
$ rm -rf CMakeCache.txt CMakeFiles/
$ cmake -G "Eclipse CDT4 - Unix Makefiles" .
It’s critical that CMakeCache.txt be removed prior to running the generator, otherwise the extra Eclipse generator logic (the CMakeFindEclipseCDT4.make module) won’t run and standard system includes will be missing from the generated project.
By default, the Eclipse CDT indexer will index everything under the kudu/ source tree. It tends to choke on certain complicated source files within thirdparty/llvm. In CDT 8.7.0, the indexer will generate so many errors that it’ll exit early, causing many spurious syntax errors to be highlighted. In older versions of CDT, it’ll spin forever.
Either way, thirdparty/llvm must be excluded from indexing. To do this, right click on the project in the Project Explorer and select Properties. In the dialog box, select "C/C++ Project Paths", select the Source tab, highlight "Exclusion filter: (None)", and click "Edit…". In the new dialog box, click "Add…". Click "Browse…" and select thirdparty/llvm-3.4.2.src. Click OK all the way out and rebuild the project index by right clicking the project in the Project Explorer and selecting Index -→ Rebuild.
With this exclusion, the only false positives (shown as "red squigglies") that
CDT presents appear to be in atomicops functions (NoBarrier_CompareAndSwap
for
example) and in VLOG() function calls.
Another Eclipse annoyance stems from the "[Targets]" linked resource that Eclipse generates for each unit test. These are probably used for building within Eclipse, but one side effect is that nearly every source file appears in the indexer twice: once via a target and once via the raw source file. To fix this, simply delete the [Targets] linked resource via the Project Explorer. Doing this should have no effect on writing code, though it may affect your ability to build from within Eclipse.
Support for compiling Kudu on OS X is planned, but not yet complete.