-
Notifications
You must be signed in to change notification settings - Fork 0
/
imgproc.py
900 lines (682 loc) · 31.6 KB
/
imgproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import annotations
import math
import random
from typing import Any
import cv2
import numpy as np
import torch
from numpy import ndarray
from torch import Tensor
from torchvision.transforms import functional as F_vision
__all__ = [
"image_to_tensor", "tensor_to_image",
"image_resize", "preprocess_one_image",
"expand_y", "rgb_to_ycbcr", "bgr_to_ycbcr", "ycbcr_to_bgr", "ycbcr_to_rgb",
"rgb_to_ycbcr_torch", "bgr_to_ycbcr_torch",
"center_crop", "random_crop", "random_rotate", "random_vertically_flip", "random_horizontally_flip",
"center_crop_torch", "random_crop_torch", "random_rotate_torch", "random_vertically_flip_torch",
"random_horizontally_flip_torch",
]
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def _cubic(x: Any) -> Any:
"""Implementation of `cubic` function in Matlab under Python language.
Args:
x: Element vector.
Returns:
Bicubic interpolation
"""
absx = torch.abs(x)
absx2 = absx ** 2
absx3 = absx ** 3
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (
((absx > 1) * (absx <= 2)).type_as(absx))
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def _calculate_weights_indices(in_length: int,
out_length: int,
scale: float,
kernel_width: int,
antialiasing: bool) -> [np.ndarray, np.ndarray, int, int]:
"""Implementation of `calculate_weights_indices` function in Matlab under Python language.
Args:
in_length (int): Input length.
out_length (int): Output length.
scale (float): Scale factor.
kernel_width (int): Kernel width.
antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
Caution: Bicubic down-sampling in PIL uses antialiasing by default.
Returns:
weights, indices, sym_len_s, sym_len_e
"""
if (scale < 1) and antialiasing:
# Use a modified kernel (larger kernel width) to simultaneously
# interpolate and antialiasing
kernel_width = kernel_width / scale
# Output-space coordinates
x = torch.linspace(1, out_length, out_length)
# Input-space coordinates. Calculate the inverse mapping such that 0.5
# in output space maps to 0.5 in input space, and 0.5 + scale in output
# space maps to 1.5 in input space.
u = x / scale + 0.5 * (1 - 1 / scale)
# What is the left-most pixel that can be involved in the computation?
left = torch.floor(u - kernel_width / 2)
# What is the maximum number of pixels that can be involved in the
# computation? Note: it's OK to use an extra pixel here; if the
# corresponding weights are all zero, it will be eliminated at the end
# of this function.
p = math.ceil(kernel_width) + 2
# The indices of the input pixels involved in computing the k-th output
# pixel are in row k of the indices matrix.
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
out_length, p)
# The weights used to compute the k-th output pixel are in row k of the
# weights matrix.
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices
# apply cubic kernel
if (scale < 1) and antialiasing:
weights = scale * _cubic(distance_to_center * scale)
else:
weights = _cubic(distance_to_center)
# Normalize the weights matrix so that each row sums to 1.
weights_sum = torch.sum(weights, 1).view(out_length, 1)
weights = weights / weights_sum.expand(out_length, p)
# If a column in weights is all zero, get rid of it. only consider the
# first and last column.
weights_zero_tmp = torch.sum((weights == 0), 0)
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
indices = indices.narrow(1, 1, p - 2)
weights = weights.narrow(1, 1, p - 2)
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
indices = indices.narrow(1, 0, p - 2)
weights = weights.narrow(1, 0, p - 2)
weights = weights.contiguous()
indices = indices.contiguous()
sym_len_s = -indices.min() + 1
sym_len_e = indices.max() - in_length
indices = indices + sym_len_s - 1
return weights, indices, int(sym_len_s), int(sym_len_e)
def image_to_tensor(image: ndarray, range_norm: bool, half: bool) -> Tensor:
"""Convert the image data type to the Tensor (NCWH) data type supported by PyTorch
Args:
image (np.ndarray): The image data read by ``OpenCV.imread``, the data range is [0,255] or [0, 1]
range_norm (bool): Scale [0, 1] data to between [-1, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type
Returns:
tensor (Tensor): Data types supported by PyTorch
Examples:
>>> example_image = cv2.imread("lr_image.bmp")
>>> example_tensor = image_to_tensor(example_image, range_norm=True, half=False)
"""
# Convert image data type to Tensor data type
tensor = torch.from_numpy(np.ascontiguousarray(image)).permute(2, 0, 1).float()
# Scale the image data from [0, 1] to [-1, 1]
if range_norm:
tensor = tensor.mul(2.0).sub(1.0)
# Convert torch.float32 image data type to torch.half image data type
if half:
tensor = tensor.half()
return tensor
def tensor_to_image(tensor: Tensor, range_norm: bool, half: bool) -> Any:
"""Convert the Tensor(NCWH) data type supported by PyTorch to the np.ndarray(WHC) image data type
Args:
tensor (Tensor): Data types supported by PyTorch (NCHW), the data range is [0, 1]
range_norm (bool): Scale [-1, 1] data to between [0, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type.
Returns:
image (np.ndarray): Data types supported by PIL or OpenCV
Examples:
>>> example_image = cv2.imread("lr_image.bmp")
>>> example_tensor = image_to_tensor(example_image, range_norm=False, half=False)
"""
if range_norm:
tensor = tensor.add(1.0).div(2.0)
if half:
tensor = tensor.half()
image = tensor.squeeze(0).permute(1, 2, 0).mul(255).clamp(0, 255).cpu().numpy().astype("uint8")
return image
def preprocess_one_image(image_path: str, range_norm: bool, half: bool, device: torch.device) -> Tensor:
# read an image using OpenCV
image = cv2.imread(image_path).astype(np.float32) / 255.0
# BGR image channel data to RGB image channel data
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Convert RGB image channel data to image formats supported by PyTorch
tensor = image_to_tensor(image, range_norm, half).unsqueeze_(0)
# Data transfer to the specified device
tensor = tensor.to(device, non_blocking=True)
return tensor
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def image_resize(image: Any, scale_factor: float, antialiasing: bool = True) -> Any:
"""Implementation of `imresize` function in Matlab under Python language.
Args:
image: The input image.
scale_factor (float): Scale factor. The same scale applies for both height and width.
antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
Caution: Bicubic down-sampling in `PIL` uses antialiasing by default. Default: ``True``.
Returns:
out_2 (np.ndarray): Output image with shape (c, h, w), [0, 1] range, w/o round
"""
squeeze_flag = False
if type(image).__module__ == np.__name__: # numpy type
numpy_type = True
if image.ndim == 2:
image = image[:, :, None]
squeeze_flag = True
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
else:
numpy_type = False
if image.ndim == 2:
image = image.unsqueeze(0)
squeeze_flag = True
in_c, in_h, in_w = image.size()
out_h, out_w = math.ceil(in_h * scale_factor), math.ceil(in_w * scale_factor)
kernel_width = 4
# get weights and indices
weights_h, indices_h, sym_len_hs, sym_len_he = _calculate_weights_indices(in_h, out_h, scale_factor, kernel_width,
antialiasing)
weights_w, indices_w, sym_len_ws, sym_len_we = _calculate_weights_indices(in_w, out_w, scale_factor, kernel_width,
antialiasing)
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
img_aug.narrow(1, sym_len_hs, in_h).copy_(image)
sym_patch = image[:, :sym_len_hs, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)
sym_patch = image[:, -sym_len_he:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(in_c, out_h, in_w)
kernel_width = weights_h.size(1)
for i in range(out_h):
idx = int(indices_h[i][0])
for j in range(in_c):
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)
sym_patch = out_1[:, :, :sym_len_ws]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)
sym_patch = out_1[:, :, -sym_len_we:]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(in_c, out_h, out_w)
kernel_width = weights_w.size(1)
for i in range(out_w):
idx = int(indices_w[i][0])
for j in range(in_c):
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])
if squeeze_flag:
out_2 = out_2.squeeze(0)
if numpy_type:
out_2 = out_2.numpy()
if not squeeze_flag:
out_2 = out_2.transpose(1, 2, 0)
return out_2
def expand_y(image: np.ndarray) -> np.ndarray:
"""Convert BGR channel to YCbCr format,
and expand Y channel data in YCbCr, from HW to HWC
Args:
image (np.ndarray): Y channel image data
Returns:
y_image (np.ndarray): Y-channel image data in HWC form
"""
# Normalize image data to [0, 1]
image = image.astype(np.float32) / 255.
# Convert BGR to YCbCr, and extract only Y channel
y_image = bgr_to_ycbcr(image, only_use_y_channel=True)
# Expand Y channel
y_image = y_image[..., None]
# Normalize the image data to [0, 255]
y_image = y_image.astype(np.float64) * 255.0
return y_image
def rgb_to_ycbcr(image: np.ndarray, only_use_y_channel: bool) -> np.ndarray:
"""Implementation of rgb2ycbcr function in Matlab under Python language
Args:
image (np.ndarray): Image input in RGB format.
only_use_y_channel (bool): Extract Y channel separately
Returns:
image (np.ndarray): YCbCr image array data
"""
if only_use_y_channel:
image = np.dot(image, [65.481, 128.553, 24.966]) + 16.0
else:
image = np.matmul(image, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [
16, 128, 128]
image /= 255.
image = image.astype(np.float32)
return image
def bgr_to_ycbcr(image: np.ndarray, only_use_y_channel: bool) -> np.ndarray:
"""Implementation of bgr2ycbcr function in Matlab under Python language.
Args:
image (np.ndarray): Image input in BGR format
only_use_y_channel (bool): Extract Y channel separately
Returns:
image (np.ndarray): YCbCr image array data
"""
if only_use_y_channel:
image = np.dot(image, [24.966, 128.553, 65.481]) + 16.0
else:
image = np.matmul(image, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [
16, 128, 128]
image /= 255.
image = image.astype(np.float32)
return image
def ycbcr_to_rgb(image: np.ndarray) -> np.ndarray:
"""Implementation of ycbcr2rgb function in Matlab under Python language.
Args:
image (np.ndarray): Image input in YCbCr format.
Returns:
image (np.ndarray): RGB image array data
"""
image_dtype = image.dtype
image *= 255.
image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
[0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
image /= 255.
image = image.astype(image_dtype)
return image
def ycbcr_to_bgr(image: np.ndarray) -> np.ndarray:
"""Implementation of ycbcr2bgr function in Matlab under Python language.
Args:
image (np.ndarray): Image input in YCbCr format.
Returns:
image (np.ndarray): BGR image array data
"""
image_dtype = image.dtype
image *= 255.
image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
[0.00791071, -0.00153632, 0],
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921]
image /= 255.
image = image.astype(image_dtype)
return image
def rgb_to_ycbcr_torch(tensor: Tensor, only_use_y_channel: bool) -> Tensor:
"""Implementation of rgb2ycbcr function in Matlab under PyTorch
References from:`https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion`
Args:
tensor (Tensor): Image data in PyTorch format
only_use_y_channel (bool): Extract only Y channel
Returns:
tensor (Tensor): YCbCr image data in PyTorch format
"""
if only_use_y_channel:
weight = Tensor([[65.481], [128.553], [24.966]]).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
else:
weight = Tensor([[65.481, -37.797, 112.0],
[128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]]).to(tensor)
bias = Tensor([16, 128, 128]).view(1, 3, 1, 1).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias
tensor /= 255.
return tensor
def bgr_to_ycbcr_torch(tensor: Tensor, only_use_y_channel: bool) -> Tensor:
"""Implementation of bgr2ycbcr function in Matlab under PyTorch
References from:`https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion`
Args:
tensor (Tensor): Image data in PyTorch format
only_use_y_channel (bool): Extract only Y channel
Returns:
tensor (Tensor): YCbCr image data in PyTorch format
"""
if only_use_y_channel:
weight = Tensor([[24.966], [128.553], [65.481]]).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
else:
weight = Tensor([[24.966, 112.0, -18.214],
[128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]).to(tensor)
bias = Tensor([16, 128, 128]).view(1, 3, 1, 1).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias
tensor /= 255.
return tensor
def center_crop(image: np.ndarray, image_size: int) -> np.ndarray:
"""Crop small image patches from one image center area.
Args:
image (np.ndarray): The input image for `OpenCV.imread`.
image_size (int): The size of the captured image area.
Returns:
patch_image (np.ndarray): Small patch image
"""
image_height, image_width = image.shape[:2]
# Just need to find the top and left coordinates of the image
top = (image_height - image_size) // 2
left = (image_width - image_size) // 2
# Crop image patch
patch_image = image[top:top + image_size, left:left + image_size, ...]
return patch_image
def random_crop(image: np.ndarray, image_size: int) -> np.ndarray:
"""Crop small image patches from one image.
Args:
image (np.ndarray): The input image for `OpenCV.imread`.
image_size (int): The size of the captured image area.
Returns:
patch_image (np.ndarray): Small patch image
"""
image_height, image_width = image.shape[:2]
# Just need to find the top and left coordinates of the image
top = random.randint(0, image_height - image_size)
left = random.randint(0, image_width - image_size)
# Crop image patch
patch_image = image[top:top + image_size, left:left + image_size, ...]
return patch_image
def random_rotate(image,
angles: list,
center,
scale_factor: float = 1.0) -> np.ndarray:
"""Rotate an image by a random angle
Args:
image (np.ndarray): Image read with OpenCV
angles (list): Rotation angle range
center (optional, tuple[int, int]): High resolution image selection center point. Default: ``None``
scale_factor (optional, float): scaling factor. Default: 1.0
Returns:
rotated_image (np.ndarray): image after rotation
"""
image_height, image_width = image.shape[:2]
if center is None:
center = (image_width // 2, image_height // 2)
# Random select specific angle
angle = random.choice(angles)
matrix = cv2.getRotationMatrix2D(center, angle, scale_factor)
rotated_image = cv2.warpAffine(image, matrix, (image_width, image_height))
return rotated_image
def random_horizontally_flip(image: np.ndarray, p: float = 0.5) -> np.ndarray:
"""Flip the image upside down randomly
Args:
image (np.ndarray): Image read with OpenCV
p (optional, float): Horizontally flip probability. Default: 0.5
Returns:
horizontally_flip_image (np.ndarray): image after horizontally flip
"""
if random.random() < p:
horizontally_flip_image = cv2.flip(image, 1)
else:
horizontally_flip_image = image
return horizontally_flip_image
def random_vertically_flip(image: np.ndarray, p: float = 0.5) -> np.ndarray:
"""Flip an image horizontally randomly
Args:
image (np.ndarray): Image read with OpenCV
p (optional, float): Vertically flip probability. Default: 0.5
Returns:
vertically_flip_image (np.ndarray): image after vertically flip
"""
if random.random() < p:
vertically_flip_image = cv2.flip(image, 0)
else:
vertically_flip_image = image
return vertically_flip_image
def center_crop_torch(
gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
gt_patch_size: int,
upscale_factor: int,
) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
"""Intercept two images to specify the center area
Args:
gt_images (ndarray | Tensor | list[ndarray] | list[Tensor]): ground truth images read by PyTorch
lr_images (ndarray | Tensor | list[ndarray] | list[Tensor]): Low resolution images read by PyTorch
gt_patch_size (int): the size of the ground truth image after interception
upscale_factor (int): the ground truth image size is a magnification of the low resolution image size
Returns:
gt_images (ndarray or Tensor or): the intercepted ground truth image
lr_images (ndarray or Tensor or): low-resolution intercepted images
"""
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# detect input image type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if input_type == "Tensor":
lr_image_height, lr_image_width = lr_images[0].size()[-2:]
else:
lr_image_height, lr_image_width = lr_images[0].shape[0:2]
# Calculate the size of the low-resolution image that needs to be intercepted
lr_patch_size = gt_patch_size // upscale_factor
# Just need to find the top and left coordinates of the image
lr_top = (lr_image_height - lr_patch_size) // 2
lr_left = (lr_image_width - lr_patch_size) // 2
# Capture low-resolution images
if input_type == "Tensor":
lr_images = [lr_image[
:,
:,
lr_top: lr_top + lr_patch_size,
lr_left: lr_left + lr_patch_size] for lr_image in lr_images]
else:
lr_images = [lr_image[
lr_top: lr_top + lr_patch_size,
lr_left: lr_left + lr_patch_size,
...] for lr_image in lr_images]
# Intercept the ground truth image
gt_top, gt_left = int(lr_top * upscale_factor), int(lr_left * upscale_factor)
if input_type == "Tensor":
gt_images = [v[
:,
:,
gt_top: gt_top + gt_patch_size,
gt_left: gt_left + gt_patch_size] for v in gt_images]
else:
gt_images = [v[
gt_top: gt_top + gt_patch_size,
gt_left: gt_left + gt_patch_size,
...] for v in gt_images]
# When the input has only one image
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
def random_crop_torch(
gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
gt_patch_size: int,
upscale_factor: int,
) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
"""Randomly intercept two images in the specified area
Args:
gt_images (ndarray | Tensor | list[ndarray] | list[Tensor]): ground truth images read by PyTorch
lr_images (ndarray | Tensor | list[ndarray] | list[Tensor]): Low resolution images read by PyTorch
gt_patch_size (int): the size of the ground truth image after interception
upscale_factor (int): the ground truth image size is a magnification of the low resolution image size
Returns:
gt_images (ndarray or Tensor or): the intercepted ground truth image
lr_images (ndarray or Tensor or): low-resolution intercepted images
"""
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# detect input image type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if input_type == "Tensor":
lr_image_height, lr_image_width = lr_images[0].size()[-2:]
else:
lr_image_height, lr_image_width = lr_images[0].shape[0:2]
# Calculate the size of the low-resolution image that needs to be intercepted
lr_patch_size = gt_patch_size // upscale_factor
# Just need to find the top and left coordinates of the image
lr_top = random.randint(0, lr_image_height - lr_patch_size)
lr_left = random.randint(0, lr_image_width - lr_patch_size)
# Capture low-resolution images
if input_type == "Tensor":
lr_images = [lr_image[
:,
:,
lr_top: lr_top + lr_patch_size,
lr_left: lr_left + lr_patch_size] for lr_image in lr_images]
else:
lr_images = [lr_image[
lr_top: lr_top + lr_patch_size,
lr_left: lr_left + lr_patch_size,
...] for lr_image in lr_images]
# Intercept the ground truth image
gt_top, gt_left = int(lr_top * upscale_factor), int(lr_left * upscale_factor)
if input_type == "Tensor":
gt_images = [v[
:,
:,
gt_top: gt_top + gt_patch_size,
gt_left: gt_left + gt_patch_size] for v in gt_images]
else:
gt_images = [v[
gt_top: gt_top + gt_patch_size,
gt_left: gt_left + gt_patch_size,
...] for v in gt_images]
# When the input has only one image
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
def random_rotate_torch(
gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
upscale_factor: int,
angles: list,
gt_center: tuple = None,
lr_center: tuple = None,
rotate_scale_factor: float = 1.0
) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
"""Randomly rotate the image
Args:
gt_images (ndarray | Tensor | list[ndarray] | list[Tensor]): ground truth images read by the PyTorch library
lr_images (ndarray | Tensor | list[ndarray] | list[Tensor]): low-resolution images read by the PyTorch library
angles (list): List of random rotation angles
upscale_factor (int): the ground truth image size is a magnification of the low resolution image size
gt_center (optional, tuple[int, int]): The center point of the ground truth image selection. Default: ``None``
lr_center (optional, tuple[int, int]): Low resolution image selection center point. Default: ``None``
rotate_scale_factor (optional, float): Rotation scaling factor. Default: 1.0
Returns:
gt_images (ndarray or Tensor or): ground truth image after rotation
lr_images (ndarray or Tensor or): Rotated low-resolution images
"""
# Randomly choose the rotation angle
angle = random.choice(angles)
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# detect input image type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if input_type == "Tensor":
lr_image_height, lr_image_width = lr_images[0].size()[-2:]
else:
lr_image_height, lr_image_width = lr_images[0].shape[0:2]
# Rotate the low-res image
if lr_center is None:
lr_center = [lr_image_width // 2, lr_image_height // 2]
# breakpoint()
lr_matrix = cv2.getRotationMatrix2D(tuple(lr_center), angle, rotate_scale_factor)
if input_type == "Tensor":
lr_images = [F_vision.rotate(lr_image, angle, center=lr_center) for lr_image in lr_images]
else:
lr_images = [cv2.warpAffine(lr_image, lr_matrix, (lr_image_width, lr_image_height)) for lr_image in lr_images]
# rotate the ground truth image
gt_image_width = int(lr_image_width * upscale_factor)
gt_image_height = int(lr_image_height * upscale_factor)
if gt_center is None:
gt_center = [gt_image_width // 2, gt_image_height // 2]
gt_matrix = cv2.getRotationMatrix2D(tuple(gt_center), angle, rotate_scale_factor)
if input_type == "Tensor":
gt_images = [F_vision.rotate(gt_image, angle, center=gt_center) for gt_image in gt_images]
else:
gt_images = [cv2.warpAffine(gt_image, gt_matrix, (gt_image_width, gt_image_height)) for gt_image in gt_images]
# When the input has only one image
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
def random_horizontally_flip_torch(
gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
p: float = 0.5
) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
"""Randomly flip the image up and down
Args:
gt_images (ndarray): ground truth images read by the PyTorch library
lr_images (ndarray): low resolution images read by the PyTorch library
p (optional, float): flip probability. Default: 0.5
Returns:
gt_images (ndarray or Tensor or): flipped ground truth images
lr_images (ndarray or Tensor or): flipped low-resolution images
"""
# Randomly generate flip probability
flip_prob = random.random()
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# detect input image type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if flip_prob > p:
if input_type == "Tensor":
lr_images = [F_vision.hflip(lr_image) for lr_image in lr_images]
gt_images = [F_vision.hflip(gt_image) for gt_image in gt_images]
else:
lr_images = [cv2.flip(lr_image, 1) for lr_image in lr_images]
gt_images = [cv2.flip(gt_image, 1) for gt_image in gt_images]
# When the input has only one image
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
def random_vertically_flip_torch(
gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
p: float = 0.5
) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
"""Randomly flip the image left and right
Args:
gt_images (ndarray): ground truth images read by the PyTorch library
lr_images (ndarray): low resolution images read by the PyTorch library
p (optional, float): flip probability. Default: 0.5
Returns:
gt_images (ndarray or Tensor or): flipped ground truth images
lr_images (ndarray or Tensor or): flipped low-resolution images
"""
# Randomly generate flip probability
flip_prob = random.random()
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# detect input image type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if flip_prob > p:
if input_type == "Tensor":
lr_images = [F_vision.vflip(lr_image) for lr_image in lr_images]
gt_images = [F_vision.vflip(gt_image) for gt_image in gt_images]
else:
lr_images = [cv2.flip(lr_image, 0) for lr_image in lr_images]
gt_images = [cv2.flip(gt_image, 0) for gt_image in gt_images]
# When the input has only one image
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images