-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net_ori.py
381 lines (317 loc) · 15 KB
/
train_net_ori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright 2023 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import argparse
import os
import random
import time
from typing import Any
import numpy as np
import torch
import torchvision
import yaml
from torch import nn, optim
from torch.backends import cudnn
from torch.cuda import amp
from torch.optim import lr_scheduler
from torch.optim.swa_utils import AveragedModel
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import save_image
import model_ori
from dataset import CUDAPrefetcher, BaseImageDataset, PairedImageDataset
from imgproc import random_crop_torch, random_rotate_torch, random_vertically_flip_torch, random_horizontally_flip_torch
from test import test
from utils import build_iqa_model, load_resume_state_dict, load_pretrained_state_dict, make_directory, save_checkpoint, \
Summary, AverageMeter, ProgressMeter
def main():
# Read parameters from configuration file
parser = argparse.ArgumentParser()
parser.add_argument("--config_path",
type=str,
default="./configs/train/RRDBNet_x2-DIV2K.yaml",
help="Path to train config file.")
args = parser.parse_args()
with open(args.config_path, "r") as f:
config = yaml.full_load(f)
# Fixed random number seed
random.seed(config["SEED"])
np.random.seed(config["SEED"])
torch.manual_seed(config["SEED"])
torch.cuda.manual_seed_all(config["SEED"])
# Because the size of the input image is fixed, the fixed CUDNN convolution method can greatly increase the running speed
cudnn.benchmark = True
# Initialize the mixed precision method
scaler = amp.GradScaler()
# Default to start training from scratch
start_epoch = 0
# Initialize the image clarity evaluation index
best_psnr = 0.0
best_ssim = 0.0
# Define the running device number
device = torch.device("cuda", config["DEVICE_ID"])
# Define the basic functions needed to start training
train_data_prefetcher, paired_test_data_prefetcher = load_dataset(config, device)
g_model, ema_g_model = build_model(config, device)
pixel_criterion = define_loss(config, device)
optimizer = define_optimizer(g_model, config)
scheduler = define_scheduler(optimizer, config)
# Load the pretrained model
if config["TRAIN"]["CHECKPOINT"]["PRETRAINED_G_MODEL"]:
g_model = load_pretrained_state_dict(g_model,
config["MODEL"]["G"]["COMPILED"],
config["TRAIN"]["CHECKPOINT"]["PRETRAINED_G_MODEL"])
print(f"Loaded `{config['TRAIN']['CHECKPOINT']['PRETRAINED_G_MODEL']}` pretrained model weights successfully.")
else:
print("Pretrained model weights not found.")
# Load the last training interruption model node
if config["TRAIN"]["CHECKPOINT"]["RESUMED_G_MODEL"]:
g_model, ema_g_model, start_epoch, best_psnr, best_ssim, optimizer, scheduler = load_resume_state_dict(
g_model,
ema_g_model,
optimizer,
scheduler,
config["MODEL"]["G"]["COMPILED"],
config["TRAIN"]["CHECKPOINT"]["RESUMED_G_MODEL"],
)
print(f"Loaded `{config['TRAIN']['CHECKPOINT']['RESUMED_G_MODEL']}` resume model weights successfully.")
else:
print("Resume training model not found. Start training from scratch.")
# Initialize the image clarity evaluation method
psnr_model, ssim_model = build_iqa_model(
config["SCALE"],
config["TEST"]["ONLY_TEST_Y_CHANNEL"],
device,
)
# Create the folder where the model weights are saved
samples_dir = os.path.join("samples", config["EXP_NAME"])
results_dir = os.path.join("results", config["EXP_NAME"])
make_directory(samples_dir)
make_directory(results_dir)
# create model training log
writer = SummaryWriter(os.path.join("samples", "logs", config["EXP_NAME"]))
for epoch in range(start_epoch, config["TRAIN"]["HYP"]["EPOCHS"]):
train(g_model,
ema_g_model,
train_data_prefetcher,
pixel_criterion,
optimizer,
epoch,
scaler,
writer,
device,
config)
# Update LR
scheduler.step()
paired_test_data_prefetcher.reset() # 重置测试数据prefetcher的指针
test_batch = paired_test_data_prefetcher.next() # 获取一批测试数据
test_lr = test_batch['lr'].to(device, non_blocking=True) # 假设测试数据包含lr键
with torch.no_grad():
test_sr = g_model(test_lr) # 使用模型进行重建
# 处理并保存重建后的图像
sample_png_dir = os.path.join(samples_dir, "picture")
make_directory(sample_png_dir)
grid_image = torchvision.utils.make_grid(test_sr, nrow=1) # 创建网格图像
save_image_path = os.path.join(sample_png_dir, f'reconstructed_epoch_{epoch}.png')
save_image(grid_image, save_image_path) # 保存图像
psnr, ssim = test(g_model,
paired_test_data_prefetcher,
psnr_model,
ssim_model,
device,
config)
print("\n")
# Write the evaluation indicators of each round of Epoch to the log
writer.add_scalar(f"Test/PSNR", psnr, epoch + 1)
writer.add_scalar(f"Test/SSIM", ssim, epoch + 1)
# Automatically save model weights
is_best = psnr > best_psnr and ssim > best_ssim
is_last = (epoch + 1) == config["TRAIN"]["HYP"]["EPOCHS"]
best_psnr = max(psnr, best_psnr)
best_ssim = max(ssim, best_ssim)
save_checkpoint({
"epoch": epoch + 1,
"psnr": psnr,
"ssim": ssim,
"state_dict": g_model.state_dict(),
"ema_state_dict": ema_g_model.state_dict() if ema_g_model is not None else None,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict() if scheduler is not None else None,
},
"g_cur.pth.tar",
samples_dir,
results_dir,
"g_best.pth.tar",
"g_last.pth.tar",
is_best,
is_last)
def load_dataset(
config: Any,
device: torch.device,
) -> [CUDAPrefetcher, CUDAPrefetcher]:
# Load the train dataset
degenerated_train_datasets = BaseImageDataset(
config["TRAIN"]["DATASET"]["TRAIN_GT_IMAGES_DIR"],
None,
config["SCALE"],
)
# Load the registration test dataset
paired_test_datasets = PairedImageDataset(config["TEST"]["DATASET"]["PAIRED_TEST_GT_IMAGES_DIR"],
config["TEST"]["DATASET"]["PAIRED_TEST_LR_IMAGES_DIR"])
# generate dataset iterator
degenerated_train_dataloader = DataLoader(degenerated_train_datasets,
batch_size=config["TRAIN"]["HYP"]["IMGS_PER_BATCH"],
shuffle=config["TRAIN"]["HYP"]["SHUFFLE"],
num_workers=config["TRAIN"]["HYP"]["NUM_WORKERS"],
pin_memory=config["TRAIN"]["HYP"]["PIN_MEMORY"],
drop_last=True,
persistent_workers=config["TRAIN"]["HYP"]["PERSISTENT_WORKERS"])
paired_test_dataloader = DataLoader(paired_test_datasets,
batch_size=config["TEST"]["HYP"]["IMGS_PER_BATCH"],
shuffle=config["TEST"]["HYP"]["SHUFFLE"],
num_workers=config["TEST"]["HYP"]["NUM_WORKERS"],
pin_memory=config["TEST"]["HYP"]["PIN_MEMORY"],
drop_last=False,
persistent_workers=config["TEST"]["HYP"]["PERSISTENT_WORKERS"])
# Replace the data set iterator with CUDA to speed up
train_data_prefetcher = CUDAPrefetcher(degenerated_train_dataloader, device)
paired_test_data_prefetcher = CUDAPrefetcher(paired_test_dataloader, device)
return train_data_prefetcher, paired_test_data_prefetcher
def build_model(
config: Any,
device: torch.device,
) -> [nn.Module, nn.Module or Any]:
g_model = model_ori.__dict__[config["MODEL"]["G"]["NAME"]](in_channels=config["MODEL"]["G"]["IN_CHANNELS"],
out_channels=config["MODEL"]["G"]["OUT_CHANNELS"],
channels=config["MODEL"]["G"]["CHANNELS"],
growth_channels=config["MODEL"]["G"]["GROWTH_CHANNELS"],
num_rrdb=config["MODEL"]["G"]["NUM_RRDB"])
g_model = g_model.to(device)
if config["MODEL"]["EMA"]["ENABLE"]:
# Generate an exponential average model based on a generator to stabilize model training
ema_decay = config["MODEL"]["EMA"]["DECAY"]
ema_avg_fn = lambda averaged_model_parameter, model_parameter, num_averaged: \
(1 - ema_decay) * averaged_model_parameter + ema_decay * model_parameter
ema_g_model = AveragedModel(g_model, device=device, avg_fn=ema_avg_fn)
else:
ema_g_model = None
# compile model
if config["MODEL"]["G"]["COMPILED"]:
g_model = torch.compile(g_model)
if config["MODEL"]["EMA"]["COMPILED"] and ema_g_model is not None:
ema_g_model = torch.compile(ema_g_model)
return g_model, ema_g_model
def define_loss(config: Any, device: torch.device) -> nn.L1Loss:
if config["TRAIN"]["LOSSES"]["PIXEL_LOSS"]["NAME"] == "L1Loss":
pixel_criterion = nn.L1Loss()
else:
raise NotImplementedError(f"Loss {config['TRAIN']['LOSSES']['PIXEL_LOSS']['NAME']} is not implemented.")
pixel_criterion = pixel_criterion.to(device)
return pixel_criterion
def define_optimizer(g_model: nn.Module, config: Any) -> optim.Adam:
if config["TRAIN"]["OPTIM"]["NAME"] == "Adam":
optimizer = optim.Adam(g_model.parameters(),
config["TRAIN"]["OPTIM"]["LR"],
config["TRAIN"]["OPTIM"]["BETAS"],
config["TRAIN"]["OPTIM"]["EPS"],
config["TRAIN"]["OPTIM"]["WEIGHT_DECAY"])
else:
raise NotImplementedError(f"Optimizer {config['TRAIN']['OPTIM']['NAME']} is not implemented.")
return optimizer
def define_scheduler(optimizer: optim.Adam, config: Any) -> lr_scheduler.StepLR:
if config["TRAIN"]["LR_SCHEDULER"]["NAME"] == "StepLR":
scheduler = lr_scheduler.StepLR(optimizer,
config["TRAIN"]["LR_SCHEDULER"]["STEP_SIZE"],
config["TRAIN"]["LR_SCHEDULER"]["GAMMA"])
else:
raise NotImplementedError(f"Scheduler {config['TRAIN']['LR_SCHEDULER']['NAME']} is not implemented.")
return scheduler
def train(
g_model: nn.Module,
ema_g_model: nn.Module,
train_data_prefetcher: CUDAPrefetcher,
pixel_criterion: nn.L1Loss,
optimizer: optim.Adam,
epoch: int,
scaler: amp.GradScaler,
writer: SummaryWriter,
device: torch.device,
config: Any,
) -> None:
# Calculate how many batches of data are in each Epoch
batches = len(train_data_prefetcher)
# Print information of progress bar during training
batch_time = AverageMeter("Time", ":6.3f", Summary.NONE)
data_time = AverageMeter("Data", ":6.3f", Summary.NONE)
losses = AverageMeter("Loss", ":6.6f", Summary.NONE)
progress = ProgressMeter(batches,
[batch_time, data_time, losses],
prefix=f"Epoch: [{epoch + 1}]")
# Put the generative network model in training mode
g_model.train()
# Define loss function weights
loss_weight = torch.Tensor(config["TRAIN"]["LOSSES"]["PIXEL_LOSS"]["WEIGHT"]).to(device)
# Initialize data batches
batch_index = 0
# Set the dataset iterator pointer to 0
train_data_prefetcher.reset()
# Record the start time of training a batch
end = time.time()
# load the first batch of data
batch_data = train_data_prefetcher.next()
while batch_data is not None:
# Load batches of data
gt = batch_data["gt"].to(device, non_blocking=True)
lr = batch_data["lr"].to(device, non_blocking=True)
# image data augmentation
gt, lr = random_crop_torch(gt,
lr,
config["TRAIN"]["DATASET"]["GT_IMAGE_SIZE"],
config["SCALE"])
gt, lr = random_rotate_torch(gt, lr, config["SCALE"], [0, 90, 180, 270])
gt, lr = random_vertically_flip_torch(gt, lr)
gt, lr = random_horizontally_flip_torch(gt, lr)
# Record the time to load a batch of data
data_time.update(time.time() - end)
# Initialize the generator model gradient
g_model.zero_grad(set_to_none=True)
# Mixed precision training
with amp.autocast():
sr = g_model(lr)
pixel_loss = pixel_criterion(sr, gt)
pixel_loss = torch.sum(torch.mul(loss_weight, pixel_loss))
# Backpropagation
scaler.scale(pixel_loss).backward()
# update model weights
scaler.step(optimizer)
scaler.update()
if config["MODEL"]["EMA"]["ENABLE"]:
# update exponentially averaged model weights
ema_g_model.update_parameters(g_model)
# record the loss value
losses.update(pixel_loss.item(), lr.size(0))
# Record the total time of training a batch
batch_time.update(time.time() - end)
end = time.time()
# Output training log information once
if batch_index % config["TRAIN"]["PRINT_FREQ"] == 0:
# write training log
iters = batch_index + epoch * batches
writer.add_scalar("Train/Loss", pixel_loss.item(), iters)
progress.display(batch_index)
# Preload the next batch of data
batch_data = train_data_prefetcher.next()
# Add 1 to the number of data batches
batch_index += 1
if __name__ == "__main__":
main()