forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PackBMatrix.cc
472 lines (440 loc) · 16.7 KB
/
PackBMatrix.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include <cpuinfo.h>
#include <cassert>
#include <iomanip>
#include <iostream>
#include "fbgemm/Fbgemm.h"
/*
* We pass in weights for Fully-connected and Convolution layers as B matrix.
* Since weights are constant during inference, B matrix is constant
* during inference so it's packed once and used multiple times. The code in
* this file takes care of fully packing B matrix. Fully packing means dividing
* the whole B matrix into blocks and storing all the blocks in the packed
* buffer instead of just 1 or some blocks.
*
* Packing refers to the rearranging of B elements to make it suitable to the
* way we access B in the inner compute kernel.
*
* Packing of B is dependent on three parameters: KCB, NCB and ROW_INTERLEAVE.
*
* Note 1: B is assumed to be in row-major format with K
* rows and N columns, i.e., the following B matrix with 3 rows and 5 columns
*
* B Matrix:
* b00 b01 b02 b03 b04
* b10 b11 b12 b13 b14
* b20 b21 b22 b23 b24
*
* is layed out in the memory as follows:
*
* B layout in memory (row major):
* b00 b01 b02 b03 b04 b10 b11 b12 b13 b14 b20 b21 b22 b23 b24
*
* Note 2: KCB is always restricted/expected to be a multiple of ROW_INTERLEAVE
* and thus it's minimum value is equal to ROW_INTERLEAVE.
*
* Note 3: ROW_INTERLEAVE is 2 for when we accumulate into 16-bits and 4 for
* when we accumulate into 32-bits.
*
* Note 4: Minimum value of NCB is such that the number of bits in
* NCB*ROW_INTERLEAVE elements at the very minimum is equal to the vector length
* (i.e., 256 for avx2 and 512 for avx512).
*
* Minimum NCB value for int8 data type:
* avx2 avx512
* acc16 16 32
* acc32 8 16
*
* Packing examples:
* Let us assume KCB=4, NCB=6 and ROW_INTERLEAVE=4 for the following examples.
* To keep things manageable in the examples, NCB is 6 which is less than the
* minimum value allowed for NCB as per the table above.
*
* * * * * * * * * * * * * * * * * * * *
*
* Example 1:
* Original B is an 8x4 matrix as follows:
* b00 b01 b02 b03
* b10 b11 b12 b13
* b20 b21 b22 b23
* b30 b31 b32 b33
* b40 b41 b42 b43
* b50 b51 b52 b53
* b60 b61 b62 b63
* b70 b71 b72 b73
*
* Packed matrix has 2 tiles along rows and 1 tile along columns. So
* allocated/needed memory for B buffer is (2*4)*(1*6) elements.
*
* Packed B matrix looks like as follows:
*
* b00 b10 b20 b30 b01 b11 b21 b31 b02 b12 b22 b32 b03 b13 b23 b33 x x x x x \
* x x x | b40 b50 b60 b70 b41 b51 b61 b71 b42 b52 b62 b72 b43 b53 b63 b73 x x \
* x x x x x x
*
* ROW_INTERLEAVE rows are mixed with columns and layed out sequentially.
*
* ("x" indicates uninitialized locations)
* ("|" indicates start of the next block; A block here refers to KCB*NCB
* elements.)
* ("\" indicates that the elements continue on the next line)
* (block 1 of size KCB*NCB directly follows block 0 of the same size)
*
* * * * * * * * * * * * * * * * * * * *
*
* Example 2:
* Original B is a 3x4 matrix as follows:
* b00 b01 b02 b03
* b10 b11 b12 b13
* b20 b21 b22 b23
*
* Packed matrix has 1 tile along rows and 1 tile along columns. So
* allocated/needed memory for B buffer is (1*4)*(1*6) elements.
*
* Packed B matrix looks like as follows:
*
* b00 b10 b20 0 b01 b11 b21 0 b02 b12 b22 0 b03 b13 b23 0 x x x x x x x x
*
* If a tile along rows has less than ROW_INTERLEAVE rows, interleaved elements
* are zero initialized.
*
* * * * * * * * * * * * * * * * * * * *
*
* Example 3:
* Original B is a 5x4 matrix as follows:
* b00 b01 b02 b03
* b10 b11 b12 b13
* b20 b21 b22 b23
* b30 b31 b32 b33
* b40 b41 b42 b43
*
* Packed matrix has 2 tiles along rows and 1 tile along columns. So
* allocated/needed memory for B buffer is (2*4)*(1*6) elements.
*
* Packed B matrix looks like as follows:
*
* b00 b10 b20 b30 b01 b11 b21 b31 b02 b12 b22 b32 b03 b13 b23 b33 x x x x x \
* x x x b40 0 0 0 b41 0 0 0 b42 0 0 0 b43 0 0 0 x x x x x x x x
*
* * * * * * * * * * * * * * * * * * * *
*
* Example 4:
* Original B is a 4x7 matrix as follows:
* b00 b01 b02 b03 b04 b05 b06
* b10 b11 b12 b13 b14 b15 b16
* b20 b21 b22 b23 b24 b25 b26
* b30 b31 b32 b33 b34 b35 b36
*
* Packed matrix has 1 tile along rows and 2 tiles along columns. So
* allocated/needed memory for B buffer is (1*4)*(2*6) elements.
*
* Packed B matrix looks like as follows:
*
* b00 b10 b20 b30 b01 b11 b21 b31 b02 b12 b22 b32 b03 b13 b23 b33 b04 b14
* b24 b34 b05 b15 b25 b35 | b06 b16 b26 b36 x x x x x x x x x x x x x x x x x \
* x x x
*
* * * * * * * * * * * * * * * * * * * *
*
* Example 5:
* Original B is a 5x7 matrix as follows:
* b00 b01 b02 b03 b04 b05 b06
* b10 b11 b12 b13 b14 b15 b16
* b20 b21 b22 b23 b24 b25 b26
* b30 b31 b32 b33 b34 b35 b36
* b40 b41 b42 b43 b44 b45 b46
*
* Packed matrix has 2 tiles along rows and 2 tiles along columns. So
* allocated/needed memory for B buffer is (2*4)*(2*6) elements.
*
* Packed B matrix looks like as follows:
*
* b00 b10 b20 b30 b01 b11 b21 b31 b02 b12 b22 b32 b03 b13 b23 b33 b04 b14 \
* b24 b34 b05 b15 b25 b35 | b06 b16 b26 b36 x x x x x x x x x x x x x x x x x \
* x x x | b40 0 0 0 b41 0 0 0 b42 0 0 0 b43 0 0 0 b44 0 0 0 b45 0 0 0 | b46 0 \
* 0 0 x x x x x x x x x x x x
*
* The kernel expects the B matrix to be packed in the way mentioned above for
* correct operation.
*/
namespace fbgemm {
template <typename T, typename accT>
PackBMatrix<T, accT>::PackBMatrix(
matrix_op_t trans,
int32_t nRow,
int32_t nCol,
const T* smat,
int32_t ld,
inpType* pmat,
int groups,
const BlockingFactors* params)
: PackMatrix<PackBMatrix<T, accT>, T, accT>(
nRow,
nCol,
pmat,
groups,
params),
trans_(trans),
smat_(smat),
ld_(ld) {
if (!cpuinfo_initialize()) {
throw std::runtime_error("Failed to initialize cpuinfo!");
}
if (params) {
BaseType::brow_ = params->KCB;
BaseType::bcol_ = params->NCB;
row_interleave_ = params->ROW_INTERLEAVE;
} else {
const inst_set_t isa = fbgemmInstructionSet();
switch (isa) {
case inst_set_t::avx512_vnni:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_) =
PackingTraits<T, accT, inst_set_t::avx512_vnni>::
getMatrixPackBParams();
break;
case inst_set_t::avx512_vnni_ymm:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_) =
PackingTraits<T, accT, inst_set_t::avx512_vnni_ymm>::
getMatrixPackBParams();
break;
case inst_set_t::avx512:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_) =
PackingTraits<T, accT, inst_set_t::avx512>::getMatrixPackBParams();
break;
case inst_set_t::avx512_ymm:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_) =
PackingTraits<T, accT, inst_set_t::avx512_ymm>::
getMatrixPackBParams();
break;
case inst_set_t::avx2:
std::tie(BaseType::brow_, BaseType::bcol_, row_interleave_) =
PackingTraits<T, accT, inst_set_t::avx2>::getMatrixPackBParams();
break;
default:
assert(0 && "unknown architecure");
throw std::runtime_error("unknown architecure");
}
}
if (BaseType::numRows() % groups != 0) {
throw std::runtime_error(
"groups = " + std::to_string(groups) +
" does not divide numRows = " + std::to_string(BaseType::numRows()));
}
// blocking for one group
block_type_t block{
0, BaseType::numRows() / BaseType::numGroups(), 0, BaseType::numCols()};
BaseType::packedBlock(block);
if (!pmat) {
BaseType::bufAllocatedHere_ = true;
BaseType::buf_ = static_cast<T*>(fbgemmAlignedAlloc(
64,
BaseType::numGroups() * BaseType::blockRows() * BaseType::brow_ *
BaseType::blockCols() * BaseType::bcol_ * sizeof(T)));
}
pack(block, params);
}
template <typename T, typename accT>
void PackBMatrix<T, accT>::pack_unpack_(
const block_type_t& block,
T* unpack_buf,
T* pack_buf,
bool ispack,
const BlockingFactors* params) {
assert((BaseType::blockRowSize() % row_interleave_) == 0);
assert((block.row_start % BaseType::blockRowSize()) == 0);
assert((block.col_start % BaseType::blockColSize()) == 0);
// When T is char *, type-based alias analysis (TBAA) cannot prove
// that `unpack_buf` and `pack_buf` do not alias `block` (because
// char * is the one exception to the C++ strict aliasing rule), so the
// compiler would have to re-load these attributes from `block` on
// every loop iteration for correctness. We know better, so let's
// help the compiler out by doing the loads ourselves into
// constants.
const auto blockRowStart = block.row_start;
const auto blockRowSize = block.row_size;
const auto blockColStart = block.col_start;
const auto blockColSize = block.col_size;
BaseType::packedBlock(block);
bool tr = (trans_ == matrix_op_t::Transpose);
for (int g = 0; g < BaseType::numGroups(); ++g) {
T* pack_buf_cur = pack_buf +
g * BaseType::packedBufferSize(blockRowSize, blockColSize, params);
for (int i = blockRowStart; i < blockRowStart + blockRowSize; ++i) {
int r_offset = ((i / BaseType::blockRowSize()) * BaseType::blockCols()) *
(BaseType::blockRowSize() * BaseType::blockColSize()) +
(i % BaseType::blockRowSize() / row_interleave_) *
BaseType::blockColSize() * row_interleave_ +
i % row_interleave_;
int c_start_offset = (blockColStart / BaseType::blockColSize()) *
BaseType::blockRowSize() * BaseType::blockColSize() +
(blockColStart % BaseType::blockColSize()) * row_interleave_;
int c_idx_offset = 0;
int c_blk_offset = 0;
for (int j = blockColStart; j < blockColStart + blockColSize; ++j) {
// int c_offset = (j / BaseType::blockColSize()) *
// BaseType::blockRowSize() * BaseType::blockColSize() +
// (j % BaseType::blockColSize()) * row_interleave_;
// 1. Loop invariant hoisting (move block offset calculation out of
// inner loop); 2. Strength reduction (change modulus in inner loop to
// an increment + rollover).
int c_offset = c_start_offset +
c_blk_offset * BaseType::blockRowSize() * BaseType::blockColSize() +
c_idx_offset * row_interleave_;
if (ispack) {
pack_buf_cur[r_offset + c_offset] = tr
? unpack_buf[i + (g * blockColSize + j) * ld_]
: unpack_buf[(g * blockRowSize + i) * ld_ + j];
} else {
T* unpack_buf_cur = tr
? &(unpack_buf[i + (g * blockColSize + j) * ld_])
: &(unpack_buf[(g * blockRowSize + i) * ld_ + j]);
*unpack_buf_cur = pack_buf_cur[r_offset + c_offset];
}
c_idx_offset++;
if (c_idx_offset == BaseType::blockColSize()) {
c_idx_offset = 0;
c_blk_offset++;
}
}
}
if (ispack) {
// fill the remaining with zero.
// Please see the comment in PackAMatrix.cc on zero vs zero_pt fill.
for (int i = blockRowStart + blockRowSize;
i < (blockRowStart + blockRowSize + row_interleave_ - 1) /
row_interleave_ * row_interleave_;
++i) {
int r_offset =
((i / BaseType::blockRowSize()) * BaseType::blockCols()) *
(BaseType::blockRowSize() * BaseType::blockColSize()) +
(i % BaseType::blockRowSize() / row_interleave_) *
BaseType::blockColSize() * row_interleave_ +
i % row_interleave_;
for (int j = blockColStart; j < blockColStart + blockColSize; j++) {
int c_offset = (j / BaseType::blockColSize()) *
BaseType::blockRowSize() * BaseType::blockColSize() +
(j % BaseType::blockColSize()) * row_interleave_;
int out_idx = r_offset + c_offset;
pack_buf_cur[out_idx] = 0;
}
}
}
} // for each group
}
template <typename T, typename accT>
void PackBMatrix<T, accT>::pack(
const block_type_t& block,
const BlockingFactors* params) {
pack_unpack_(block, const_cast<T*>(smat_), BaseType::getBuf(), true, params);
}
template <typename T, typename accT>
void PackBMatrix<T, accT>::unpack(
T* origin_buf,
const BlockingFactors* params) {
block_type_t blockB{
BaseType::packedRowStart(),
BaseType::numPackedRows(),
BaseType::packedColStart(),
BaseType::numPackedCols()};
pack_unpack_(blockB, origin_buf, BaseType::getBuf(), false, params);
}
template <typename T, typename accT>
int32_t PackBMatrix<T, accT>::addr(int32_t r, int32_t c) const {
int32_t block_row_id = r / BaseType::blockRowSize();
int32_t brow_offset = (block_row_id * BaseType::blockCols()) *
(BaseType::blockRowSize() * BaseType::blockColSize());
int32_t block_col_id = c / BaseType::blockColSize();
int32_t bcol_offset =
block_col_id * BaseType::blockRowSize() * BaseType::blockColSize();
int32_t block_offset = brow_offset + bcol_offset;
int32_t inblock_offset = (r % BaseType::blockRowSize() / row_interleave_) *
BaseType::blockColSize() * row_interleave_ +
(c % BaseType::blockColSize()) * row_interleave_ + r % row_interleave_;
int32_t index = block_offset + inblock_offset;
return index;
}
template <typename T, typename accT>
void PackBMatrix<T, accT>::printPackedMatrix(
std::string name,
const BlockingFactors* params) {
std::cout << name << ":"
<< "[" << BaseType::numPackedRows() << ", "
<< BaseType::numPackedCols() << "]" << std::endl;
std::cout << "block size:"
<< "[" << BaseType::blockRowSize() << ", "
<< BaseType::blockColSize() << "]" << std::endl;
for (int g = 0; g < BaseType::numGroups(); ++g) {
T* out = BaseType::getBuf() +
g *
BaseType::packedBufferSize(
BaseType::numPackedRows(), BaseType::numPackedCols(), params);
std::cout << "group: " << g << std::endl;
for (auto nr = 0; nr < BaseType::blockRows(); ++nr) {
auto rows = (nr == BaseType::blockRows() - 1) ? BaseType::lastBrow()
: BaseType::blockRowSize();
for (auto nc = 0; nc < BaseType::blockCols(); ++nc) {
std::cout << "block:" << nr << ", " << nc << std::endl;
auto cols = (nc == BaseType::blockCols() - 1)
? BaseType::lastBcol()
: BaseType::blockColSize();
for (auto r = 0; r < (rows + row_interleave_ - 1) / row_interleave_;
++r) {
for (auto c = 0; c < cols * row_interleave_; ++c) {
T val =
out[nr * BaseType::blockCols() * BaseType::blockRowSize() *
BaseType::blockColSize() +
nc * BaseType::blockRowSize() * BaseType::blockColSize() +
r * BaseType::blockColSize() * row_interleave_ + c];
if (std::is_integral<T>::value) {
// cast to int64 because cout doesn't print int8_t type directly
std::cout << std::setw(5) << static_cast<int64_t>(val) << " ";
} else {
std::cout << std::setw(5) << val << " ";
}
}
std::cout << std::endl;
}
std::cout << std::endl;
}
}
}
}
template <typename T, typename accT>
bool PackBMatrix<T, accT>::metaEquals(const PackBMatrix<T, accT>& that) const {
if (BaseType::numRows() != that.numRows() ||
BaseType::numCols() != that.numCols() ||
BaseType::blockRowSize() != that.blockRowSize() ||
BaseType::blockColSize() != that.blockColSize() ||
BaseType::blockRows() != that.blockRows() ||
BaseType::blockCols() != that.blockCols() ||
BaseType::numPackedRows() != that.numPackedRows() ||
BaseType::numPackedCols() != that.numPackedCols() ||
trans_ != that.trans_ || BaseType::numGroups() != that.numGroups() ||
row_interleave_ != that.row_interleave_) {
return false;
}
return true;
}
template <typename T, typename accT>
bool PackBMatrix<T, accT>::equals(const PackBMatrix<T, accT>& that) const {
if (!metaEquals(that)) {
return false;
}
for (int i = 0; i < this->numRows(); ++i) {
for (int j = 0; j < this->numCols(); ++j) {
if (this->buf_[addr(i, j)] != that.buf_[that.addr(i, j)]) {
return false;
}
}
}
return true;
}
template class PackBMatrix<int8_t, int32_t>;
template class PackBMatrix<int8_t, int16_t>;
} // namespace fbgemm