-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
213 lines (187 loc) · 9.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import datetime
import os
import pprint
import re
import time
import accelerate
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.logging import get_logger
from accelerate.tracking import TensorBoardTracker
from accelerate.utils import ProjectConfiguration
from torch.utils import data
from util.collate_fn import collate_fn
from util.engine import evaluate_acc, train_one_epoch_acc
from util.group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from util.lazy_load import Config
from util.misc import default_setup, encode_labels, fixed_generator, seed_worker
from util.utils import HighestCheckpoint, load_checkpoint, load_state_dict
def parse_args():
parser = argparse.ArgumentParser(description="Train a detector")
parser.add_argument("--config-file", default="configs/train_config.py")
parser.add_argument(
"--mixed-precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
parser.add_argument(
"--accumulate-steps", type=int, default=1, help="Steps to accumulate gradients"
)
parser.add_argument("--seed", type=int, help="Random seed")
parser.add_argument("--use-deterministic-algorithms", action="store_true")
dynamo_backend = ["no", "eager", "aot_eager", "inductor", "aot_ts_nvfuser", "nvprims_nvfuser"]
dynamo_backend += ["cudagraphs", "ofi", "fx2trt", "onnxrt", "tensorrt", "ipex", "tvm"]
parser.add_argument(
"--dynamo-backend",
type=str,
default="no",
choices=dynamo_backend,
help="""
Set to one of the possible dynamo backends to optimize the training with torch dynamo.
See https://pytorch.org/docs/stable/torch.compiler.html and
https://huggingface.co/docs/accelerate/main/en/package_reference/utilities#accelerate.utils.DynamoBackend
""",
)
args = parser.parse_args()
return args
def update_checkpoint_path(cfg: Config):
# modify output directory
weight_path = getattr(cfg, "resume_from_checkpoint", None)
if weight_path is not None and os.path.isdir(weight_path):
cfg.output_dir = weight_path
elif getattr(cfg, "output_dir", None) is None:
# make sure all processes have same output directory
accelerate.utils.wait_for_everyone()
cfg.output_dir = os.path.join(
"checkpoints",
os.path.basename(cfg.model_path).split(".")[0],
"train",
datetime.datetime.now().strftime("%Y-%m-%d-%H_%M_%S"),
)
# modify checkpoint directory
if weight_path is not None and os.path.isdir(weight_path):
# default path: xxxx-xx-xx-yy_yy_yy/checkpoints/{checkpoint_1}
if "checkpoints" in os.listdir(cfg.resume_from_checkpoint):
# if given output_dir, find the newest checkpoint under checkpoints directory
output_dir = os.path.join(cfg.resume_from_checkpoint, "checkpoints")
folders = [os.path.join(output_dir, folder) for folder in os.listdir(output_dir)]
folders.sort(
key=lambda folder: list(map(int, re.findall(r"[\/]?([0-9]+)(?=[^\/]*$)", folder)))[
0]
)
cfg.resume_from_checkpoint = folders[-1]
else:
# if there is not saved checkpoints, do not resume
cfg.resume_from_checkpoint = None
return cfg
def train():
args = parse_args()
# lazy load, for logging purpose and decouple with model initialization
lazy_loads = ("lr_scheduler", "optimizer", "param_dicts")
cfg = Config(file_path=args.config_file, partials=lazy_loads)
cfg = update_checkpoint_path(cfg)
# Initialize accelerator
project_config = ProjectConfiguration(
project_dir=cfg.output_dir, total_limit=5, automatic_checkpoint_naming=True
)
tensorboard_tracker = TensorBoardTracker(run_name="tf_log", logging_dir=cfg.output_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=cfg.find_unused_parameters)
accelerator = Accelerator(
log_with=tensorboard_tracker,
project_config=project_config,
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.accumulate_steps,
dynamo_backend=args.dynamo_backend,
step_scheduler_with_optimizer=False,
kwargs_handlers=[kwargs],
)
accelerator.init_trackers("det_train")
default_setup(args, cfg, accelerator)
logger = get_logger(os.path.basename(os.getcwd()) + "." + __name__)
# instantiate dataset
params = dict(num_workers=cfg.num_workers, collate_fn=collate_fn)
params.update(dict(pin_memory=cfg.pin_memory, persistent_workers=True))
if args.use_deterministic_algorithms:
# set using deterministic algorithms
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True, warn_only=True)
params.update({"worker_init_fn": seed_worker, "generator": fixed_generator()})
# we use group_based sampler, which increases training speed slightly
group_ids = create_aspect_ratio_groups(cfg.train_dataset, k=3)
train_batch_sampler = GroupedBatchSampler(
data.RandomSampler(cfg.train_dataset), group_ids, cfg.batch_size
)
train_loader = data.DataLoader(cfg.train_dataset, batch_sampler=train_batch_sampler, **params)
test_loader = data.DataLoader(cfg.test_dataset, 1, shuffle=False, **params)
# instantiate model, optimizer and lr_scheduler
model = Config(cfg.model_path).model
if accelerator.use_distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
optimizer = cfg.optimizer(cfg.param_dicts(model))
lr_scheduler = cfg.lr_scheduler(optimizer)
# load from a pretrained weight and fine-tune on it
weight_path = getattr(cfg, "resume_from_checkpoint", None)
if weight_path is not None and os.path.isfile(weight_path):
checkpoint = load_checkpoint(cfg.resume_from_checkpoint)
load_state_dict(model, checkpoint)
logger.info(f"load pretrained from {cfg.resume_from_checkpoint}")
# register dataset class information into the model, useful for inference
cat_ids = list(range(max(cfg.train_dataset.coco.cats.keys()) + 1))
classes = tuple(cfg.train_dataset.coco.cats.get(c, {"name": "none"})["name"] for c in cat_ids)
model.register_buffer("_classes_", torch.tensor(encode_labels(classes)))
# prepare for distributed training
model, optimizer, train_loader, test_loader, lr_scheduler = accelerator.prepare(
model, optimizer, train_loader, test_loader, lr_scheduler
)
# load from a directory, which means resume training
if weight_path is not None and os.path.isdir(weight_path):
accelerator.load_state(cfg.resume_from_checkpoint)
path = os.path.basename(cfg.resume_from_checkpoint)
cfg.starting_epoch = int(path.split("_")[-1]) + 1
accelerator.project_configuration.iteration = cfg.starting_epoch
logger.info(f"resume training of {cfg.output_dir}, from {path}")
else:
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info("model parameters: {}".format(n_params))
logger.info("optimizer: {}".format(optimizer))
logger.info("lr_scheduler: {}".format(pprint.pformat(lr_scheduler.state_dict())))
# save dataset name, useful for inference
if accelerator.is_main_process:
label_file = os.path.join(cfg.output_dir, "label_names.txt")
with open(label_file, "w") as f:
caid_name = [f"{k} {v['name']}" for k, v in cfg.train_dataset.coco.cats.items()]
caid_name = "\n".join(caid_name)
f.write(caid_name)
logger.info(f"Label names is saved to {label_file}")
logger.info("Start training")
start_time = time.perf_counter()
highest_checkpoint = HighestCheckpoint(accelerator, model)
for epoch in range(cfg.starting_epoch, cfg.num_epochs):
train_one_epoch_acc(
model=model,
optimizer=optimizer,
data_loader=train_loader,
epoch=epoch,
print_freq=cfg.print_freq,
max_grad_norm=cfg.max_norm,
accelerator=accelerator,
)
lr_scheduler.step()
# we save model and labels together
accelerator.save_state(safe_serialization=False)
logger.info("Start evaluation")
coco_evaluator = evaluate_acc(model, test_loader, epoch, accelerator)
# save best results
cur_ap, cur_ap50 = coco_evaluator.coco_eval["bbox"].stats[:2]
highest_checkpoint.update(ap=cur_ap, ap50=cur_ap50)
total_time = time.perf_counter() - start_time
total_time = str(datetime.timedelta(seconds=int(total_time)))
logger.info("Training time: {}".format(total_time))
accelerator.end_training()
if __name__ == "__main__":
train()