-
Notifications
You must be signed in to change notification settings - Fork 12
/
misc.py
232 lines (188 loc) · 7.99 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import copy
import functools
import logging
import math
import os
import random
from datetime import datetime
from functools import partial
from typing import List
import accelerate
import numpy as np
import torch
import torchvision
from accelerate.logging import get_logger
from fvcore.common.file_io import PathManager
from torch import Tensor
from torchvision.models.detection.image_list import ImageList
from util import utils
from util.collect_env import collect_env_info
from util.logger import setup_logger
def replace_prefix(string, prefix, replacement):
if string.startswith(prefix):
string = replacement + string[len(prefix):]
return string
def inverse_sigmoid(x, eps: float = 1e-3):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def get_total_grad_norm(parameters, norm_type=2):
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
device = parameters[0].device
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
norm_type,
)
return total_norm
# _onnx_batch_images() is an implementation of
# batch_images() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_batch_images(images: List[Tensor], size_divisible: int = 32) -> Tensor:
max_size = []
for i in range(images[0].dim()):
max_size_i = torch.max(torch.stack([img.shape[i]
for img in images]).to(torch.float32)).to(torch.int64)
max_size.append(max_size_i)
stride = size_divisible
max_size[1] = (torch.ceil((max_size[1].to(torch.float32)) / stride) * stride).to(torch.int64)
max_size[2] = (torch.ceil((max_size[2].to(torch.float32)) / stride) * stride).to(torch.int64)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# which is not yet supported in onnx
padded_imgs = []
for img in images:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
return torch.stack(padded_imgs)
def image_list_from_tensors(images: List[Tensor], size_divisible=32, fill_value=0):
if isinstance(images, ImageList):
return images
# check channels of images
batched_channel = images[0].shape[0]
assert all(
batched_channel == image.shape[0] for image in images
), f"all images must have the same channel but got {list(map(lambda x: x.shape[0], images))}"
# get original_shapes and batched_shape
original_shapes = list(map(lambda x: x.shape[-2:], images))
# get batched shapes, divisible by size_divisible
if torchvision._is_tracing():
# batch_images() does not export well to ONNX
# call _onnx_batch_images() instead
batched_images = _onnx_batch_images(images, size_divisible)
return ImageList(batched_images, original_shapes)
original_h, original_w = list(zip(*original_shapes))
batched_h, batched_w = max(original_h), max(original_w)
batched_h = int(math.ceil(float(batched_h) / size_divisible) * size_divisible)
batched_w = int(math.ceil(float(batched_w) / size_divisible) * size_divisible)
# generate batched image tensors
batched_shape = (len(images), batched_channel, batched_h, batched_w)
batched_images = images[0].new_full(batched_shape, fill_value)
for idx, image in enumerate(images):
batched_images[idx, :, :image.shape[1], :image.shape[2]].copy_(image)
batched_images = ImageList(batched_images, original_shapes)
return batched_images
def _highlight(code, filename):
try:
import pygments
except ImportError:
return code
from pygments.formatters import Terminal256Formatter
from pygments.lexers import Python3Lexer, YamlLexer
lexer = Python3Lexer() if filename.endswith(".py") else YamlLexer()
code = pygments.highlight(code, lexer, Terminal256Formatter(style="monokai"))
return code
def default_setup(args, cfg, accelerator):
output_dir = getattr(cfg, "output_dir", None)
rank = accelerator.local_process_index
if accelerator.is_main_process and output_dir:
os.makedirs(output_dir, exist_ok=True)
# capture warning.warns information into logging
logging.captureWarnings(True)
train_log_file = os.path.join(output_dir, "training.log")
set_logger = partial(setup_logger, output=train_log_file, distributed_rank=rank)
# setup loggers from warnings, accelerate, detection framworks
root_logger_name = os.path.basename(os.getcwd())
list(map(lambda x: set_logger(name=x), ["py.warnings", "accelerate", root_logger_name]))
logger = get_logger(root_logger_name + "." + __name__)
logger.info("Rank of current process: {}, World size: {}".format(rank, utils.get_world_size()))
logger.info("Environment info: \n" + collect_env_info())
logger.info("Command line arguments: " + str(args))
if hasattr(args, "config_file") and args.config_file != "":
logger.info(
"Contents of args.config_file={}:\n{}".format(
args.config_file,
_highlight(PathManager.open(args.config_file, "r").read(), args.config_file),
)
)
# make sure each worker has a different, yet deterministic seed if specified
if hasattr(args, "seed") and args.seed and args.seed > 0:
seed = args.seed
else:
seed = (
os.getpid() + int(datetime.now().strftime("%S%f")) +
int.from_bytes(os.urandom(2), "big")
)
logger.info("Using the random seed: {}".format(seed))
accelerate.utils.set_seed(seed, device_specific=True)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def fixed_generator():
g = torch.Generator()
g.manual_seed(0)
return g
def to_device(inputs, device):
if isinstance(inputs, (tuple, list)):
return type(inputs)([to_device(i, device) for i in inputs])
if isinstance(inputs, dict):
return type(inputs)({
to_device(k, device): to_device(v, device)
for k, v in inputs.items()
})
if isinstance(inputs, torch.Tensor):
return inputs.to(device, non_blocking=True)
return inputs
def deepcopy(inputs):
if isinstance(inputs, (tuple, list)):
return type(inputs)([deepcopy(i) for i in inputs])
if isinstance(inputs, dict):
return type(inputs)({deepcopy(k): deepcopy(v) for k, v in inputs.items()})
if isinstance(inputs, torch.Tensor):
return inputs.clone().detach()
return copy.deepcopy(inputs)
@functools.lru_cache
def encode_labels(labels: List[str]):
"""Encode a list of string to a list of int, for example: ["l1", "Label2", "n"]
will be encoded as: [108, 49, -1, 76, 97, 98, 101, 108, 50, -1, 110, -1].
Each letter will be converted using ord() function in Python.
:param labels: A list of str to be encoded.
:return: A list of int, in which -1 is used as delimiters to split strings.
"""
assert [isinstance(s, str) for s in labels], "All elements must be strings"
int_list = []
for label in labels:
int_list += [ord(s) for s in label]
int_list += [-1]
return int_list
@functools.lru_cache
def decode_labels(ints: List[int]):
"""Decode a list of int to a list of string, for example: [108, 49, -1, 76, 50, -1, 110, -1]
will be decoded as: ["l1", "L2", "n"]. Each number will be converted to a letter using chr()
function in Python, and -1 is used as delimiters to split strings.
:param ints: A list of int to be converted.
:return: A list of string.
"""
string_list = []
string = ""
for number in ints:
if number != -1:
string += chr(number)
else:
string_list.append(string)
string = ""
return string_list