forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_trainer_config.conf
87 lines (72 loc) · 2.86 KB
/
sample_trainer_config.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#edit-mode: -*- python -*-
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
TrainData(SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000))
TestData(SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000))
settings(batch_size = 100)
data = data_layer(name='input', size=3)
fc1 = fc_layer(input=data, size=5,
bias_attr=False,
act=SigmoidActivation())
fc2 = fc_layer(input=data, size=9,
bias_attr=False,
act=LinearActivation())
fc3 = fc_layer(input=data, size=3,
bias_attr=False,
act=TanhActivation())
fc4 = fc_layer(input=data, size=5,
bias_attr=False,
act=LinearActivation(),
param_attr=ParamAttr(name='sharew'))
fc5 = fc_layer(input=data, size=5,
bias_attr=False,
act=BReluActivation())
fc6 = fc_layer(input=data, size=5,
bias_attr=False,
act=SoftReluActivation())
fc7 = fc_layer(input=data, size=3,
bias_attr=False,
act=SquareActivation())
fc8 = fc_layer(input=data, size=5,
bias_attr=True,
act=SquareActivation())
with mixed_layer(size=3, act=SoftmaxActivation()) as layer9:
layer9 += full_matrix_projection(input=fc1)
layer9 += full_matrix_projection(input=fc2)
layer9 += full_matrix_projection(input=fc3)
layer9 += trans_full_matrix_projection(input=fc4,
param_attr=ParamAttr(name='sharew'))
layer9 += full_matrix_projection(input=fc5)
layer9 += full_matrix_projection(input=fc6)
layer9 += full_matrix_projection(input=fc7)
layer9 += full_matrix_projection(input=fc8)
if get_config_arg('with_cost', bool, True):
# This is for training the neural network.
# We need to have another data layer for label
# and a layer for calculating cost
lbl = data_layer(name='label', size=1)
outputs(classification_cost(input=layer9, label=lbl))
else:
# This is for prediction where we don't have label
# and don't need to calculate cost
outputs(layer9)