forked from msracver/Deformable-ConvNets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
129 lines (113 loc) · 6.07 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# --------------------------------------------------------
# Deformable Convolutional Networks
# Copyright (c) 2017 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Yi Li, Haochen Zhang
# --------------------------------------------------------
import _init_paths
import argparse
import os
import sys
import logging
import pprint
import cv2
from config.config import config, update_config
from utils.image import resize, transform
import numpy as np
# get config
os.environ['PYTHONUNBUFFERED'] = '1'
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
os.environ['MXNET_ENABLE_GPU_P2P'] = '0'
cur_path = os.path.abspath(os.path.dirname(__file__))
update_config(cur_path + '/../experiments/rfcn/cfgs/rfcn_coco_demo.yaml')
sys.path.insert(0, os.path.join(cur_path, '../external/mxnet', config.MXNET_VERSION))
import mxnet as mx
from core.tester import im_detect, Predictor
from symbols import *
from utils.load_model import load_param
from utils.show_boxes import show_boxes
from utils.tictoc import tic, toc
from nms.nms import py_nms_wrapper, cpu_nms_wrapper, gpu_nms_wrapper
def parse_args():
parser = argparse.ArgumentParser(description='Show Deformable ConvNets demo')
# general
parser.add_argument('--rfcn_only', help='whether use R-FCN only (w/o Deformable ConvNets)', default=False, action='store_true')
args = parser.parse_args()
return args
args = parse_args()
def main():
# get symbol
pprint.pprint(config)
config.symbol = 'resnet_v1_101_rfcn_dcn' if not args.rfcn_only else 'resnet_v1_101_rfcn'
sym_instance = eval(config.symbol + '.' + config.symbol)()
sym = sym_instance.get_symbol(config, is_train=False)
# set up class names
num_classes = 81
classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat',
'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse',
'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
# load demo data
image_names = ['COCO_test2015_000000000891.jpg', 'COCO_test2015_000000001669.jpg']
data = []
for im_name in image_names:
assert os.path.exists(cur_path + '/../demo/' + im_name), ('%s does not exist'.format('../demo/' + im_name))
im = cv2.imread(cur_path + '/../demo/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
target_size = config.SCALES[0][0]
max_size = config.SCALES[0][1]
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
im_tensor = transform(im, config.network.PIXEL_MEANS)
im_info = np.array([[im_tensor.shape[2], im_tensor.shape[3], im_scale]], dtype=np.float32)
data.append({'data': im_tensor, 'im_info': im_info})
# get predictor
data_names = ['data', 'im_info']
label_names = []
data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))]
max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]]
provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))]
provide_label = [None for i in xrange(len(data))]
arg_params, aux_params = load_param(cur_path + '/../model/' + ('rfcn_dcn_coco' if not args.rfcn_only else 'rfcn_coco'), 0, process=True)
predictor = Predictor(sym, data_names, label_names,
context=[mx.gpu(0)], max_data_shapes=max_data_shape,
provide_data=provide_data, provide_label=provide_label,
arg_params=arg_params, aux_params=aux_params)
nms = gpu_nms_wrapper(config.TEST.NMS, 0)
# warm up
for j in xrange(2):
data_batch = mx.io.DataBatch(data=[data[0]], label=[], pad=0, index=0,
provide_data=[[(k, v.shape) for k, v in zip(data_names, data[0])]],
provide_label=[None])
scales = [data_batch.data[i][1].asnumpy()[0, 2] for i in xrange(len(data_batch.data))]
scores, boxes, data_dict = im_detect(predictor, data_batch, data_names, scales, config)
# test
for idx, im_name in enumerate(image_names):
data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx,
provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]],
provide_label=[None])
scales = [data_batch.data[i][1].asnumpy()[0, 2] for i in xrange(len(data_batch.data))]
tic()
scores, boxes, data_dict = im_detect(predictor, data_batch, data_names, scales, config)
boxes = boxes[0].astype('f')
scores = scores[0].astype('f')
dets_nms = []
for j in range(1, scores.shape[1]):
cls_scores = scores[:, j, np.newaxis]
cls_boxes = boxes[:, 4:8] if config.CLASS_AGNOSTIC else boxes[:, j * 4:(j + 1) * 4]
cls_dets = np.hstack((cls_boxes, cls_scores))
keep = nms(cls_dets)
cls_dets = cls_dets[keep, :]
cls_dets = cls_dets[cls_dets[:, -1] > 0.7, :]
dets_nms.append(cls_dets)
print 'testing {} {:.4f}s'.format(im_name, toc())
# visualize
im = cv2.imread(cur_path + '/../demo/' + im_name)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
show_boxes(im, dets_nms, classes, 1)
print 'done'
if __name__ == '__main__':
main()