-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtransformation.py
398 lines (314 loc) · 19.6 KB
/
transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from __future__ import division
import os,cv2,helper,time,scipy.io
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import initializers
from spatial_transformer import transformer
import numpy as np
training_phase = False
if(training_phase):
rgb_path = "../traindata/RGB512Full/"
mat_path = "../traindata/transform/transform_512/"
label_path = "../traindata/label_refine/"
save_model_path = "../trainedmodels/transform"
num_folder = 2
else:
save_model_path = "../trainedmodels/transform"
mat_path = "../testdata/transform/transform_512/"
save_result_path = "../result/transform/transform_512/"
label_path = "../testdata/label_refine_512/"
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
os.environ['CUDA_VISIBLE_DEVICES']=str(np.argmax([int(x.split()[2]) for x in open('tmp','r').readlines()]))
os.system('rm tmp')
batch_size = 1
num_proposal = 10
crop_size_h = 512
crop_size_w = 1024
sp = 512
#resolution 256 x 512
'''
crop_size_h = 512
crop_size_w = 1024
sp = 512
'''
# resolution 1024 x 2048
'''
crop_size_h = 1024
crop_size_w = 2048
sp = 1024
'''
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
def lrelu(x):
return tf.maximum(0.2*x,x)
MEAN_VALUES = np.array([123.6800, 116.7790, 103.9390]).reshape((1,1,1,3))
def build_net(ntype,nin,nwb=None,name=None):
if ntype=='conv':
return tf.nn.relu(tf.nn.conv2d(nin,nwb[0],strides=[1,1,1,1],padding='SAME',name=name)+nwb[1])
elif ntype=='pool':
return tf.nn.avg_pool(nin,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
def one_hot(label):
output=np.zeros((1,100,label.shape[0],label.shape[1]),dtype=np.float32);
for i in range(label.shape[0]):
for j in range(label.shape[1]):
if label[i,j]>0:
output[0,label[i,j]-1,i,j]=1
return output
def get_weight_bias(vgg_layers,i):
weights=vgg_layers[i][0][0][2][0][0]
weights=tf.constant(weights)
bias=vgg_layers[i][0][0][2][0][1]
bias=tf.constant(np.reshape(bias,(bias.size)))
return weights,bias
def build_vgg19(input,reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
net={}
vgg_rawnet=scipy.io.loadmat('Models/imagenet-vgg-verydeep-19.mat')
vgg_layers=vgg_rawnet['layers'][0]
net['input']=input-MEAN_VALUES
net['conv1_1']=build_net('conv',net['input'],get_weight_bias(vgg_layers,0),name='vgg_conv1_1')
net['conv1_2']=build_net('conv',net['conv1_1'],get_weight_bias(vgg_layers,2),name='vgg_conv1_2')
net['pool1']=build_net('pool',net['conv1_2'])
net['conv2_1']=build_net('conv',net['pool1'],get_weight_bias(vgg_layers,5),name='vgg_conv2_1')
net['conv2_2']=build_net('conv',net['conv2_1'],get_weight_bias(vgg_layers,7),name='vgg_conv2_2')
net['pool2']=build_net('pool',net['conv2_2'])
net['conv3_1']=build_net('conv',net['pool2'],get_weight_bias(vgg_layers,10),name='vgg_conv3_1')
net['conv3_2']=build_net('conv',net['conv3_1'],get_weight_bias(vgg_layers,12),name='vgg_conv3_2')
net['conv3_3']=build_net('conv',net['conv3_2'],get_weight_bias(vgg_layers,14),name='vgg_conv3_3')
net['conv3_4']=build_net('conv',net['conv3_3'],get_weight_bias(vgg_layers,16),name='vgg_conv3_4')
net['pool3']=build_net('pool',net['conv3_4'])
net['conv4_1']=build_net('conv',net['pool3'],get_weight_bias(vgg_layers,19),name='vgg_conv4_1')
net['conv4_2']=build_net('conv',net['conv4_1'],get_weight_bias(vgg_layers,21),name='vgg_conv4_2')
net['conv4_3']=build_net('conv',net['conv4_2'],get_weight_bias(vgg_layers,23),name='vgg_conv4_3')
net['conv4_4']=build_net('conv',net['conv4_3'],get_weight_bias(vgg_layers,25),name='vgg_conv4_4')
net['pool4']=build_net('pool',net['conv4_4'])
net['conv5_1']=build_net('conv',net['pool4'],get_weight_bias(vgg_layers,28),name='vgg_conv5_1')
net['conv5_2']=build_net('conv',net['conv5_1'],get_weight_bias(vgg_layers,30),name='vgg_conv5_2')
net['conv5_3']=build_net('conv',net['conv5_2'],get_weight_bias(vgg_layers,32),name='vgg_conv5_3')
net['conv5_4']=build_net('conv',net['conv5_3'],get_weight_bias(vgg_layers,34),name='vgg_conv5_4')
net['pool5']=build_net('pool',net['conv5_4'])
return net
def proposal_transform(proposal,mask,label):
input = tf.concat([proposal,mask,tf.tile(label,[num_proposal,1,1,1])],axis = 3)
if(sp==512):
input = tf.image.resize_bilinear(input,[crop_size_h//2, crop_size_w//2], align_corners = True)
elif(sp==1024):
input = tf.image.resize_bilinear(input,[crop_size_h//4, crop_size_w//4], align_corners = True)
conv1_transform = slim.repeat(input, 2, slim.conv2d, 64, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu, scope='g_transform_conv1')
pool1_transform = slim.avg_pool2d(conv1_transform, [3, 3], stride=2, padding='SAME', scope='g_transform_pool1')
conv2_transform = slim.repeat(pool1_transform, 2, slim.conv2d, 128, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu, scope='g_transfrom_conv2')
pool2_transform = slim.max_pool2d(conv2_transform, [3, 3], stride=2, padding='SAME', scope='g_transform_pool2')
conv3_transform = slim.repeat(pool2_transform, 3, slim.conv2d, 256, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu, scope='g_transform_conv3')
pool3_transform = slim.max_pool2d(conv3_transform, [3, 3], stride=2, padding='SAME', scope='g_transform_pool3')
conv4_transform = slim.repeat(pool3_transform, 3, slim.conv2d, 512, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu,
scope='g_transform_conv4')
pool4_transform = slim.max_pool2d(conv4_transform, [3, 3], stride=2, padding='SAME', scope='g_transform_pool4')
conv5_transform = slim.repeat(pool4_transform, 3, slim.conv2d, 512, [3, 3], rate=1, normalizer_fn=slim.layer_norm,
activation_fn=lrelu,
scope='g_transform_conv5')
pool5_transform = slim.max_pool2d(conv5_transform, [3, 3], stride=2, padding='SAME', scope='g_transform_pool5')
pool6_transform = slim.avg_pool2d(pool5_transform, [8, 16], stride=[8, 16], padding='VALID',
scope='g_transform_pool6')
pool6_reshape = tf.reshape(pool6_transform,[batch_size*num_proposal,512])
initial_W = np.zeros((512,6),dtype = np.float32)
W_fc1 = tf.Variable(initial_value = initial_W, name='g_transform_param')
initial = np.array([[1.0, 0., 0.], [0., 1.0, 0.]])
initial = initial.astype('float32')
initial = initial.flatten()
b_fc1 = tf.Variable(initial_value=initial, name='g_b_fc1')
transform_param = tf.matmul(pool6_reshape, W_fc1) + b_fc1
# This is to avoid bilinear intepolation to corrupt the original pixel in cityscape dataset.
# Since cityscape has very similar viewpoint patterns, spatial transformer can only slightly influence the result
# The following two lines can be comment if on other datasets like NYU and ADE20k
if(not training_phase):
transform_param = tf.round(transform_param)
proposal_refine = transformer(proposal,transform_param,[crop_size_h,crop_size_w])
proposal_refine_new = tf.multiply(proposal_refine,tf.tile(mask,[1,1,1,3]))
proposal_refine_new = tf.reduce_sum(proposal_refine_new,axis = 0, keep_dims = True)
return proposal_refine,proposal_refine_new
def compute_error(real,fake,label,mask,flag = True):
if (flag):
return tf.reduce_sum(tf.reduce_mean(label*tf.expand_dims(tf.reduce_mean(tf.abs(fake-real),reduction_indices=[0,3]),-1),reduction_indices=[0,1,2]))
loss = tf.reduce_mean(tf.abs(fake-real),reduction_indices =[3],keep_dims = True)
loss = tf.multiply(loss,mask)
loss = tf.reduce_sum(loss)/(tf.reduce_sum(mask)+1.0)
return loss
with tf.variable_scope(tf.get_variable_scope()) as scope:
label=tf.placeholder(tf.float32,[batch_size,None,None,20])
real_image=tf.placeholder(tf.float32,[batch_size,None,None,3])
fake_image=tf.placeholder(tf.float32,[batch_size,None,None,3])
mask = tf.placeholder(tf.float32,[batch_size*num_proposal,crop_size_h,crop_size_w,1])
proposal = tf.placeholder(tf.float32,[batch_size*num_proposal,crop_size_h,crop_size_w,3])
proposal_transfer,proposal_new = proposal_transform(proposal,mask,label)
real_B,real_G,real_R = tf.split(real_image,num_or_size_splits = 3,axis = 3)
real_image_new = tf.concat([real_R, real_G,real_B],axis = 3)
weight=tf.placeholder(tf.float32)
mask_all = tf.reduce_sum(mask, axis=0, keep_dims = True)
p_transformer = compute_error(real_image_new,proposal_new*255.0,label,mask_all, False)
G_loss = p_transformer*1.0
lr=tf.placeholder(tf.float32)
t_vars = tf.trainable_variables()
for var in t_vars:
if var.name.startswith('g_'):
print var.name
if(training_phase):
G_opt=tf.train.AdamOptimizer(learning_rate=lr).minimize(loss = G_loss,var_list=[var for var in t_vars if var.name.startswith('g_')])
saver=tf.train.Saver(max_to_keep=1000)
sess.run(tf.global_variables_initializer())
ckpt=tf.train.get_checkpoint_state(save_model_path+ "/0100")
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
if(training_phase):
best=np.inf
all_loss=np.zeros(3000,dtype=float)
g_loss=np.zeros(3000,dtype=float)
all_c_loss=np.zeros(3000,dtype=float)
input_images=[None]*3000
label_images=[None]*3000
tmp_label = np.zeros((batch_size,19,crop_size_h,crop_size_w),dtype = float)
tmp_image = np.zeros((batch_size, crop_size_h,crop_size_w, 3), dtype = float)
tmp_mask = np.zeros((batch_size*num_proposal,crop_size_h, crop_size_w,1), dtype =float)
#tmp_mask_all = np.zeros((batch_size,crop_size_h,crop_size_w,1),dtype = float)
tmp_proposal = np.zeros((batch_size*num_proposal,crop_size_h,crop_size_w,3),dtype = float)
total_number = 2975
base_lr = 1e-4
for epoch in range(1,101):
if os.path.isdir(save_model_path+"/%04d"%epoch):
continue
cnt=0
tmp_list = np.random.permutation(total_number) + 1
global_ind = 0
ind = 0
while(global_ind<total_number):
st=time.time()
tmp_label = np.zeros((batch_size, 19, crop_size_h, crop_size_w), dtype=float)
tmp_image = np.zeros((batch_size, crop_size_h, crop_size_w, 3), dtype=float)
tmp_mask = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 1), dtype=float)
tmp_proposal = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 3), dtype=float)
for batch_count in range(0, batch_size):
if(ind>=total_number):
ind = 0
rand_folder = np.random.permutation(num_folder) + 1
try:
dic = scipy.io.loadmat(mat_path +"%02d"%rand_folder[0]+ "/%08d.mat"%tmp_list[ind])
except:
print("cannot load" + "%08d.mat" % tmp_list[ind])
print(mat_path +"%02d"%rand_folder[0]+ "/%08d.mat"%tmp_list[ind])
ind = ind + 1
global_ind = global_ind + 1
continue
cnt += 1
num = dic['proposal'].shape[0]
tmp_label[:, :, :, :] = helper.get_semantic_map(label_path+ "/%08d.png" % tmp_list[ind])
tmp_image[:, :, :, :] = np.expand_dims(np.float32(cv2.imread(rgb_path + "/%08d.png"%tmp_list[ind])),axis=0)
if(num<=num_proposal):
tmp_mask[0:num, :, :, :] = np.expand_dims(dic['mask'], axis=3).astype(np.float32)
tmp_proposal[0:num, :, :, :] = (dic['proposal']).astype(np.float32)/ 255.0
if(num>num_proposal):
d = np.random.permutation(num)
tmp_mask[:,:,:,:] = np.expand_dims(dic['mask'],axis=3).astype(np.float32)[d[0:num_proposal],:,:,:]#+np.expand_dims(np.expand_dims(dic2['mask'],axis=0),axis=3)
tmp_proposal[:,:,:,:] = (dic['proposal']).astype(np.float32)[d[0:num_proposal],:,:,:]/255.0 #+ np.expand_dims(dic2['proposal'],axis = 0)
z = np.concatenate((tmp_label, np.expand_dims(1 - np.sum(tmp_label, axis=1), axis=1)), axis=1)
z = z.transpose([0,2,3,1])
# print z.shape
ind = ind + 1
global_ind = global_ind + 1
_,G_current,l6,lr_value=sess.run([G_opt,G_loss,p_transformer,lr],feed_dict={label:z,real_image:tmp_image,mask: tmp_mask, proposal:tmp_proposal,lr:min(base_lr*np.power(1.1,epoch-1),1e-5 if epoch>112 else 1e-5)})
g_loss[cnt]=G_current
print("%d %d %.2f %.2f %.2f %.6f"%(epoch,cnt,np.mean(g_loss[np.where(g_loss)]),np.mean(l6),time.time()-st, lr_value))
if epoch%1==0:
os.makedirs(save_model_path+"/%04d" % epoch)
target = open(save_model_path+"/%04d/score.txt" % epoch, 'w')
target.write("%f" % np.mean(g_loss[np.where(g_loss)]))
target.close()
saver.save(sess,save_model_path+"/model.ckpt")
if epoch%20==0:
saver.save(sess,save_model_path+"/%04d/model.ckpt"%epoch)
cnt=3000
tmp_list = range(2926,2976) + range(100001,100051)
#tmp_list = range(1100,1200)
global_count = 0
semantic = np.zeros((batch_size,19,crop_size_h,crop_size_w),dtype = float)
proposal_val = np.zeros((batch_size*num_proposal,crop_size_h,crop_size_w,3),dtype = float)
proposal_mask = np.zeros((batch_size*num_proposal,crop_size_h,crop_size_w,1),dtype = float)
while (global_count < 99):
semantic = np.zeros((batch_size, 19, crop_size_h, crop_size_w), dtype=float)
proposal_val = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 3), dtype=float)
proposal_mask = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 1), dtype=float)
for local_count in range(0,batch_size):
semantic[:,:,:,:]= helper.get_semantic_map(label_path + "/%08d.png" % tmp_list[global_count])
dic = scipy.io.loadmat(mat_path + "/01/"+"%08d.mat"%tmp_list[global_count])
num = dic['proposal'].shape[0]
if (num <= num_proposal):
proposal_mask[0:num, :, :, :] = np.expand_dims(dic['mask'], axis=3).astype(np.float32)
proposal_val[0:num, :, :, :] = (dic['proposal']).astype(np.float32) / 255.0
if (num > num_proposal):
d = np.random.permutation(num)
proposal_mask[:, :, :, :] = np.expand_dims(dic['mask'], axis=3).astype(np.float32)[d[0:num_proposal], :, :,:] # +np.expand_dims(np.expand_dims(dic2['mask'],axis=0),axis=3)
proposal_val[:, :, :, :] = (dic['proposal']).astype(np.float32)[d[0:num_proposal], :, :,:] / 255.0 # + np.expand_dims(dic2['proposal'],axis = 0)
global_count = global_count +1
z = np.concatenate((semantic, np.expand_dims(1 - np.sum(semantic, axis=1), axis=1)), axis=1)
z = z.transpose([0, 2, 3, 1])
proposal_output=sess.run(proposal_new,feed_dict={label:z,proposal:proposal_val,mask:proposal_mask})
proposal_output = np.minimum(np.maximum(proposal_output, 0.0), 1.0)
proposal_output = proposal_output * 255.0
proposal_output_final = np.concatenate((np.expand_dims(proposal_output[:, :, :, 2], axis=3),
np.expand_dims(proposal_output[:, :, :, 1], axis=3),
np.expand_dims(proposal_output[:, :, :, 0], axis=3)), axis=3)
cv2.imwrite(save_model_path + "/%04d/%06d_output_proposal.png" % (epoch, cnt), np.uint8(proposal_output_final[0, :, :, :]))
print(cnt)
cnt = cnt + batch_size
else:
if not os.path.isdir(save_result_path):
os.makedirs(save_result_path)
semantic = np.zeros((batch_size,19,crop_size_h,crop_size_w),dtype = float)
proposal_val = np.zeros((batch_size*num_proposal,crop_size_h,crop_size_w,3),dtype = float)
proposal_mask = np.zeros((batch_size*num_proposal,crop_size_h,crop_size_w,1),dtype = float)
for ind in range(100001,100501):
print(ind)
semantic = np.zeros((batch_size, 19, crop_size_h, crop_size_w), dtype=float)
proposal_val = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 3), dtype=float)
proposal_mask = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 1), dtype=float)
semantic[:, :, :, :] = helper.get_semantic_map(label_path + "/%08d.png" % ind)
dic = scipy.io.loadmat(mat_path + "/%08d.mat" % (ind))
proposals = dic['proposal'].astype(np.float32) / 255.0
query_mask = dic['mask'].astype(np.float32)
if (proposals.ndim == 0):
continue
if (proposals.ndim == 3 and query_mask.ndim == 2):
proposals = np.expand_dims(proposals, axis=0)
query_mask = np.expand_dims(query_mask, axis=0)
proposal_transfered_result = np.zeros((proposals.shape[0],proposals.shape[1],proposals.shape[2],proposals.shape[3]),dtype=np.float32)
total_proposal = proposals.shape[0]
print((np.floor(total_proposal / num_proposal) + 1).astype(np.int32))
for n in range(0,(np.floor(total_proposal/num_proposal)+1).astype(np.int32)):
proposal_val = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 3), dtype=float)
proposal_mask = np.zeros((batch_size * num_proposal, crop_size_h, crop_size_w, 1), dtype=float)
if(total_proposal<=num_proposal):
proposal_val[0:total_proposal, :, :, :] = proposals[:,:,:,:]
proposal_mask[0:total_proposal, :, :, :] = np.expand_dims(query_mask,axis = 3)
proposal_transfer_data=sess.run(proposal_transfer,feed_dict={label:np.concatenate((semantic,np.expand_dims(1-np.sum(semantic,axis=1),axis=1)),axis=1).transpose([0,2,3,1]),proposal:proposal_val,mask:proposal_mask})
proposal_transfered_result[0:total_proposal,:,:,:] = proposal_transfer_data[0:total_proposal,:,:,:]
elif(n==np.floor(total_proposal/num_proposal)):
residual_num = total_proposal - num_proposal*n
start_num = num_proposal*n
proposal_val[0:residual_num,:,:,:] = proposals[start_num:total_proposal,:,:,:]
proposal_mask[0:residual_num,:,:,:] = np.expand_dims(query_mask[start_num:total_proposal,:,:],axis=3)
proposal_transfer_data = sess.run(proposal_transfer, feed_dict={label: np.concatenate((semantic, np.expand_dims(1 - np.sum(semantic, axis=1), axis=1)),axis=1).transpose([0, 2, 3, 1]), proposal: proposal_val, mask: proposal_mask})
proposal_transfered_result[start_num:total_proposal, :, :,:] = proposal_transfer_data[0:residual_num, :, :, :]
else:
start_num = n*num_proposal
end_num = (n+1)*num_proposal
proposal_val = proposals[start_num:end_num,:,:,:]
proposal_mask = np.expand_dims(query_mask[start_num:end_num,:,:],axis=3)
proposal_transfer_data = sess.run(proposal_transfer, feed_dict={label: np.concatenate((semantic, np.expand_dims(1 - np.sum(semantic, axis=1), axis=1)),axis=1).transpose([0, 2, 3, 1]), proposal: proposal_val, mask: proposal_mask})
proposal_transfered_result[start_num:end_num, :, :, :] = proposal_transfer_data
proposal_transfered_result = np.uint8(proposal_transfered_result*255.0)
scipy.io.savemat(save_result_path+"/%08d.mat"%(ind),{'transferred':proposal_transfered_result})