-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimate_k_gcd.py
executable file
·237 lines (178 loc) · 8.57 KB
/
estimate_k_gcd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
import argparse
import math
import numpy as np
import torch
import torch.nn as nn
from torch.optim import SGD, lr_scheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from copy import deepcopy
from data.augmentations import get_transform
from data.get_datasets import get_datasets, get_class_splits
from util.general_utils import AverageMeter, init_experiment, load_trained_paras, set_seed, np_cosine_sim
from util.cluster_and_log_utils import log_accs_from_preds
from config import exp_root
from model import *
from models import vision_transformer as vits
from sklearn.cluster import KMeans
# from finch import FINCH
from cluster import *
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from scipy.optimize import minimize_scalar
from functools import partial
from scipy.optimize import linear_sum_assignment as linear_assignment
estimated_k_gb_gcd_and_ours = {
'cifar10': 9,
'cifar100': 100,
'imagenet_100':109,
'cub':231,
'scars':230,
'aircraft':102,
'pets':38,
'herbarium_19':520
}
def cluster_acc(y_true, y_pred, return_ind=False):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(int)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=int)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_assignment(w.max() - w)
ind = np.vstack(ind).T
if return_ind:
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size, ind, w
else:
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
@torch.no_grad()
def test_kmeans_for_scipy(K, merge_test_loader, model, args=None, verbose=False):
"""
In this case, the test loader needs to have the labelled and unlabelled subsets of the training data
"""
model.eval()
K = int(K)
all_feats = []
targets = np.array([])
mask_lab = np.array([]) # From all the data, which instances belong to the labelled set
mask_cls = np.array([]) # From all the data, which instances belong to seen classes
print('Collating features...')
# First extract all features
for batch_idx, (images, label, _, mask_lab_) in enumerate(tqdm(merge_test_loader)):
images = images.to(device)
feats = model(images)
feats = torch.nn.functional.normalize(feats, dim=-1)
all_feats.append(feats.cpu().numpy())
targets = np.append(targets, label.cpu().numpy())
mask_cls = np.append(mask_cls, np.array([True if x.item() in range(len(args.train_classes))
else False for x in label]))
mask_lab = np.append(mask_lab, mask_lab_.cpu().bool().numpy())
# -----------------------
# K-MEANS
# -----------------------
mask_lab = mask_lab.astype(bool)
mask_cls = mask_cls.astype(bool)
all_feats = np.concatenate(all_feats)
print(f'Fitting K-Means for K = {K}...')
kmeans = KMeans(n_clusters=K, random_state=0).fit(all_feats)
preds = kmeans.labels_
# -----------------------
# EVALUATE
# -----------------------
mask = mask_lab
labelled_acc, labelled_nmi, labelled_ari = cluster_acc(targets.astype(int)[mask], preds.astype(int)[mask]), \
nmi_score(targets[mask], preds[mask]), \
ari_score(targets[mask], preds[mask])
unlabelled_acc, unlabelled_nmi, unlabelled_ari = cluster_acc(targets.astype(int)[~mask],
preds.astype(int)[~mask]), \
nmi_score(targets[~mask], preds[~mask]), \
ari_score(targets[~mask], preds[~mask])
print(f'K = {K}')
print('Labelled Instances acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(labelled_acc, labelled_nmi,
labelled_ari))
print('Unlabelled Instances acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(unlabelled_acc, unlabelled_nmi,
unlabelled_ari))
return -labelled_acc
@torch.no_grad()
def scipy_optimise(merge_test_loader, model, args):
small_k = args.num_labeled_classes
big_k = args.max_classes
test_k_means_partial = partial(test_kmeans_for_scipy, merge_test_loader=merge_test_loader, model=model, args=args, verbose=True)
res = minimize_scalar(test_k_means_partial, bounds=(small_k, big_k), method='bounded', options={'disp': True})
print(f'Optimal K is {res.x}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--eval_funcs', nargs='+', help='Which eval functions to use', default=['v2', 'v2p'])
parser.add_argument('--warmup_model_dir', type=str, default=None)
parser.add_argument('--dataset_name', type=str, default='aircraft', help='options: cifar10, cifar100, imagenet_100, cub, scars, fgvc_aricraft, herbarium_19')
parser.add_argument('--prop_train_labels', type=float, default=0.5)
parser.add_argument('--use_ssb_splits', action='store_true', default=True)
parser.add_argument('--exp_root', type=str, default=exp_root)
parser.add_argument('--transform', type=str, default='imagenet')
parser.add_argument('--exp_name', default='gcd_estimate_k', type=str)
parser.add_argument('--max_classes', default=1000, type=int)
# ----------------------
# INIT
# ----------------------
args = parser.parse_args()
device = torch.device('cuda:0')
args = get_class_splits(args)
args.num_labeled_classes = len(args.train_classes)
args.num_unlabeled_classes = len(args.unlabeled_classes)
init_experiment(args, runner_name=['simgcd'])
args.logger.info(f'Using evaluation function {args.eval_funcs[0]} to print results')
torch.backends.cudnn.benchmark = True
cluster_accs = {}
# ----------------------
# BASE MODEL
# ----------------------
args.image_size = 224
args.interpolation = 3
args.crop_pct = 0.875
# load model from local path
backbone = vits.__dict__['vit_base']()
state_dict = torch.load('./pretrained_models/dino/dino_vitbase16_pretrain.pth', map_location='cpu')
backbone.load_state_dict(state_dict)
args.image_size = 224
args.feat_dim = 768
args.num_mlp_layers = 3
args.mlp_out_dim = int(estimated_k_gb_gcd_and_ours[args.dataset_name])
projector = DINOHead(in_dim=args.feat_dim, out_dim=args.mlp_out_dim, nlayers=args.num_mlp_layers)
model = nn.Sequential(backbone, projector)
args.best_model_path = './dev_outputs/gcd/log/aircraft_simgcd_(21.01.2024_|_02.198)/checkpoints/model_best.pt'
model = load_trained_paras(args.best_model_path, [model], ['model'])[0]
model.to(device)
if args.warmup_model_dir is not None:
args.logger.info(f'Loading weights from {args.warmup_model_dir}')
backbone.load_state_dict(torch.load(args.warmup_model_dir, map_location='cpu'))
# --------------------
# CONTRASTIVE TRANSFORM
# --------------------
train_transform, test_transform = get_transform(args.transform, image_size=args.image_size, args=args)
# --------------------
# DATASETS
# --------------------
train_dataset, test_dataset, unlabelled_train_examples_test, datasets = get_datasets(args.dataset_name,
test_transform,
test_transform,
args)
# --------------------
# DATALOADERS
# --------------------
train_loader = DataLoader(train_dataset, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=False, drop_last=False, pin_memory=True)
# ----------------------
# estimate k
# ----------------------
scipy_optimise(merge_test_loader=train_loader, model=model[0], args=args)