forked from deepchem/deepchem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_curve.py
171 lines (156 loc) · 5.73 KB
/
benchmark_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
Created on Sat Oct 14 16:59:49 2017
@author: zqwu
This script evaluates how performances change with
different size of training set(training set fraction).
Default fractions evaluated are 0.1, 0.2, ..., 0.9.
The whole dataset is split into train set and valid set
with corresponding fractions.(test set is not used)
Models are trained on train set and evaluated on valid set.
Command line options are the same as `benchmark.py`
All results and train set fractions are stored in
'./results_frac_train_curve.csv'
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
import os
import numpy as np
import deepchem as dc
import argparse
import pickle
import csv
from deepchem.molnet.run_benchmark_models import benchmark_classification, benchmark_regression
from deepchem.molnet.run_benchmark import load_dataset
from deepchem.molnet.check_availability import CheckFeaturizer, CheckSplit
from deepchem.molnet.preset_hyper_parameters import hps
# Evaluate performances with different training set fraction
frac_trains = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
parser = argparse.ArgumentParser(
description='Deepchem benchmark: ' +
'giving performances of different learning models on datasets')
parser.add_argument(
'-s',
action='append',
dest='splitter_args',
default=[],
help='Choice of splitting function: index, random, scaffold, stratified')
parser.add_argument(
'-m',
action='append',
dest='model_args',
default=[],
help='Choice of model: tf, tf_robust, logreg, rf, irv, graphconv, xgb,' + \
' dag, weave, tf_regression, tf_regression_ft, rf_regression, ' + \
'graphconvreg, xgb_regression, dtnn, dag_regression, weave_regression')
parser.add_argument(
'-d',
action='append',
dest='dataset_args',
default=[],
help='Choice of dataset: bace_c, bace_r, bbbp, chembl, clearance, ' +
'clintox, delaney, hiv, hopv, kaggle, lipo, muv, nci, pcba, ' +
'pdbbind, ppb, qm7, qm7b, qm8, qm9, sampl, sider, tox21, toxcast')
parser.add_argument(
'--seed',
action='append',
dest='seed_args',
default=[],
help='Choice of random seed')
args = parser.parse_args()
#Datasets and models used in the benchmark test
splitters = args.splitter_args
models = args.model_args
datasets = args.dataset_args
if len(args.seed_args) > 0:
seed = int(args.seed_args[0])
else:
seed = 123
out_path = '.'
for dataset in datasets:
for split in splitters:
for model in models:
hyper_parameters = None
# Uncomment the two lines below if hyper_parameters are provided
#with open(os.path.join(out_path, dataset + model + '.pkl'), 'r') as f:
# hyper_parameters = pickle.load(f)
if dataset in [
'bace_c', 'bbbp', 'clintox', 'hiv', 'muv', 'pcba', 'sider', 'tox21',
'toxcast'
]:
mode = 'classification'
metric = [dc.metrics.Metric(dc.metrics.roc_auc_score, np.mean)]
elif dataset in [
'bace_r', 'chembl', 'clearance', 'delaney', 'hopv', 'kaggle', 'lipo',
'nci', 'pdbbind', 'ppb', 'qm7', 'qm7b', 'qm8', 'qm9', 'sampl'
]:
mode = 'regression'
metric = [dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)]
pair = (dataset, model)
if pair in CheckFeaturizer:
featurizer = CheckFeaturizer[pair][0]
n_features = CheckFeaturizer[pair][1]
else:
supported_combinations = [
key for key in CheckFeaturizer.keys() if pair[0] == key[0]
]
supported_models = [k[1] for k in supported_combinations]
raise ValueError(
"Model %s not supported for %s dataset. Please choose from the following:\n%s"
% (pair[1], pair[0], " ".join(supported_models)))
tasks, all_dataset, transformers = load_dataset(
dataset, featurizer, split='index')
all_dataset = dc.data.DiskDataset.merge(all_dataset)
for frac_train in frac_trains:
splitters = {
'index': dc.splits.IndexSplitter(),
'random': dc.splits.RandomSplitter(),
'scaffold': dc.splits.ScaffoldSplitter(),
'stratified': dc.splits.SingletaskStratifiedSplitter(task_number=0)
}
splitter = splitters[split]
np.random.seed(seed)
train, valid, test = splitter.train_valid_test_split(
all_dataset,
frac_train=frac_train,
frac_valid=1 - frac_train,
frac_test=0.)
test = valid
if mode == 'classification':
train_score, valid_score, test_score = benchmark_classification(
train,
valid,
test,
tasks,
transformers,
n_features,
metric,
model,
test=False,
hyper_parameters=hyper_parameters,
seed=seed)
elif mode == 'regression':
train_score, valid_score, test_score = benchmark_regression(
train,
valid,
test,
tasks,
transformers,
n_features,
metric,
model,
test=False,
hyper_parameters=hyper_parameters,
seed=seed)
with open(os.path.join(out_path, 'results_frac_train_curve.csv'),
'a') as f:
writer = csv.writer(f)
model_name = list(train_score.keys())[0]
for i in train_score[model_name]:
output_line = [
dataset,
str(split), mode, model_name, i, 'train',
train_score[model_name][i], 'valid', valid_score[model_name][i]
]
output_line.extend(['frac_train', frac_train])
writer.writerow(output_line)