forked from ganji15/kenlm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kenlm.pyx
261 lines (215 loc) · 8.4 KB
/
kenlm.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
cimport _kenlm
cdef bytes as_str(data):
if isinstance(data, bytes):
return data
elif isinstance(data, unicode):
return data.encode('utf8')
raise TypeError('Cannot convert %s to string' % type(data))
cdef class FullScoreReturn:
"""
Wrapper around FullScoreReturn.
Notes:
`prob` has been renamed to `log_prob`
`oov` has been added to flag whether the word is OOV
"""
cdef float log_prob
cdef int ngram_length
cdef bint oov
def __cinit__(self, log_prob, ngram_length, oov):
self.log_prob = log_prob
self.ngram_length = ngram_length
self.oov = oov
def __repr__(self):
return '{0}({1}, {2}, {3})'.format(self.__class__.__name__, repr(self.log_prob), repr(self.ngram_length), repr(self.oov))
property log_prob:
def __get__(self):
return self.log_prob
property ngram_length:
def __get__(self):
return self.ngram_length
property oov:
def __get__(self):
return self.oov
cdef class State:
"""
Wrapper around lm::ngram::State so that python code can make incremental queries.
Notes:
* rich comparisons
* hashable
"""
cdef _kenlm.State _c_state
def __richcmp__(State qa, State qb, int op):
r = qa._c_state.Compare(qb._c_state)
if op == 0: # <
return r < 0
elif op == 1: # <=
return r <= 0
elif op == 2: # ==
return r == 0
elif op == 3: # !=
return r != 0
elif op == 4: # >
return r > 0
else: # >=
return r >= 0
def __hash__(self):
return _kenlm.hash_value(self._c_state)
class LoadMethod:
LAZY = _kenlm.LAZY
POPULATE_OR_LAZY = _kenlm.POPULATE_OR_LAZY
POPULATE_OR_READ = _kenlm.POPULATE_OR_READ
READ = _kenlm.READ
PARALLEL_READ = _kenlm.PARALLEL_READ
cdef class Config:
"""
Wrapper around lm::ngram::Config.
Pass this to Model's constructor to set the load_method.
"""
cdef _kenlm.Config _c_config
def __init__(self):
self._c_config = _kenlm.Config()
property load_method:
def __get__(self):
return self._c_config.load_method
def __set__(self, to):
self._c_config.load_method = to
cdef class Model:
"""
Wrapper around lm::ngram::Model.
"""
cdef _kenlm.Model* model
cdef public bytes path
cdef _kenlm.const_Vocabulary* vocab
def __init__(self, path, Config config = Config()):
"""
Load the language model.
:param path: path to an arpa file or a kenlm binary file.
:param config: configuration options (see lm/config.hh for documentation)
"""
self.path = os.path.abspath(as_str(path))
try:
self.model = _kenlm.LoadVirtual(self.path, config._c_config)
except RuntimeError as exception:
exception_message = str(exception).replace('\n', ' ')
raise IOError('Cannot read model \'{}\' ({})'.format(path, exception_message))\
from exception
self.vocab = &self.model.BaseVocabulary()
def __dealloc__(self):
del self.model
property order:
def __get__(self):
return self.model.Order()
def score(self, sentence, bos = True, eos = True):
"""
Return the log10 probability of a string. By default, the string is
treated as a sentence.
return log10 p(sentence </s> | <s>)
If you do not want to condition on the beginning of sentence, pass
bos = False
Never include <s> as part of the string. That would be predicting the
beginning of sentence. Language models are only supposed to condition
on it as context.
Similarly, the end of sentence token </s> can be omitted with
eos = False
Since language models explicitly predict </s>, it can be part of the
string.
Examples:
#Good: returns log10 p(this is a sentence . </s> | <s>)
model.score("this is a sentence .")
#Good: same as the above but more explicit
model.score("this is a sentence .", bos = True, eos = True)
#Bad: never include <s>
model.score("<s> this is a sentence")
#Bad: never include <s>, even if bos = False.
model.score("<s> this is a sentence", bos = False)
#Good: returns log10 p(a fragment)
model.score("a fragment", bos = False, eos = False)
#Good: returns log10 p(a fragment </s>)
model.score("a fragment", bos = False, eos = True)
#Ok, but bad practice: returns log10 p(a fragment </s>)
#Unlike <s>, the end of sentence token </s> can appear explicitly.
model.score("a fragment </s>", bos = False, eos = False)
"""
cdef list words = as_str(sentence).split()
cdef _kenlm.State state
if bos:
self.model.BeginSentenceWrite(&state)
else:
self.model.NullContextWrite(&state)
cdef _kenlm.State out_state
cdef float total = 0
for word in words:
total += self.model.BaseScore(&state, self.vocab.Index(word), &out_state)
state = out_state
if eos:
total += self.model.BaseScore(&state, self.vocab.EndSentence(), &out_state)
return total
def perplexity(self, sentence):
"""
Compute perplexity of a sentence.
@param sentence One full sentence to score. Do not include <s> or </s>.
"""
words = len(as_str(sentence).split()) + 1 # For </s>
return 10.0**(-self.score(sentence) / words)
def full_scores(self, sentence, bos = True, eos = True):
"""
full_scores(sentence, bos = True, eos = Ture) -> generate full scores (prob, ngram length, oov)
@param sentence is a string (do not use boundary symbols)
@param bos should kenlm add a bos state
@param eos should kenlm add an eos state
"""
cdef list words = as_str(sentence).split()
cdef _kenlm.State state
if bos:
self.model.BeginSentenceWrite(&state)
else:
self.model.NullContextWrite(&state)
cdef _kenlm.State out_state
cdef _kenlm.FullScoreReturn ret
cdef float total = 0
cdef _kenlm.WordIndex wid
for word in words:
wid = self.vocab.Index(word)
ret = self.model.BaseFullScore(&state, wid, &out_state)
yield (ret.prob, ret.ngram_length, wid == 0)
state = out_state
if eos:
ret = self.model.BaseFullScore(&state,
self.vocab.EndSentence(), &out_state)
yield (ret.prob, ret.ngram_length, False)
def BeginSentenceWrite(self, State state):
"""Change the given state to a BOS state."""
self.model.BeginSentenceWrite(&state._c_state)
def NullContextWrite(self, State state):
"""Change the given state to a NULL state."""
self.model.NullContextWrite(&state._c_state)
def BaseScore(self, State in_state, str word, State out_state):
"""
Return p(word|in_state) and update the output state.
Wrapper around model.BaseScore(in_state, Index(word), out_state)
:param word: the suffix
:param state: the context (defaults to NullContext)
:returns: p(word|state)
"""
cdef float total = self.model.BaseScore(&in_state._c_state, self.vocab.Index(as_str(word)), &out_state._c_state)
return total
def BaseFullScore(self, State in_state, str word, State out_state):
"""
Wrapper around model.BaseScore(in_state, Index(word), out_state)
:param word: the suffix
:param state: the context (defaults to NullContext)
:returns: FullScoreReturn(word|state)
"""
cdef _kenlm.WordIndex wid = self.vocab.Index(as_str(word))
cdef _kenlm.FullScoreReturn ret = self.model.BaseFullScore(&in_state._c_state, wid, &out_state._c_state)
return FullScoreReturn(ret.prob, ret.ngram_length, wid == 0)
def __contains__(self, word):
cdef bytes w = as_str(word)
return (self.vocab.Index(w) != 0)
def __repr__(self):
return '<Model from {0}>'.format(os.path.basename(self.path))
def __reduce__(self):
return (Model, (self.path,))
class LanguageModel(Model):
"""Backwards compatability stub. Use Model."""