forked from YunheWang/HomePage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
912 lines (791 loc) · 49.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Yunhe Wang's Homepage</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="description" content="Yunhe Wang is currently a senior researcher at Huawei Noah's Ark Lab">
<meta name="keywords" content="Yunhe Wang, 王云鹤, wangyunhe, Yunhe, Wang, Deep Learning, Huawei, PKU, Computer, Vision">
<meta name="author" content="Yunhe Wang" />
<link rel="stylesheet" href="w3.css">
<style>
.w3-sidebar a {font-family: "Roboto", sans-serif}
body,h1,h2,h3,h4,h5,h6,.w3-wide {font-family: "Montserrat", sans-serif;}
</style>
<link rel="icon" type="image/png" href="images/icons.png">
<!--
<script src="jquery.min.js"></script>
<script>
$(document).ready(function(){
// Add smooth scrolling to all links
$("a").on('click', function(event) {
// Make sure this.hash has a value before overriding default behavior
if (this.hash !== "") {
// Prevent default anchor click behavior
event.preventDefault();
// Store hash
var hash = this.hash;
// Using jQuery's animate() method to add smooth page scroll
// The optional number (800) specifies the number of milliseconds it takes to scroll to the specified area
$('html, body').animate({
scrollTop: $(hash).offset().top
}, 800, function(){
// Add hash (#) to URL when done scrolling (default click behavior)
window.location.hash = hash;
});
} // End if
});
});
</script>
//-->
</head>
<body class="w3-content" style="max-width:1000px">
<!-- Sidebar/menu -->
<nav class="w3-sidebar w3-bar-block w3-black w3-collapse w3-top w3-right" style="z-index:3;width:150px" id="mySidebar">
<div class="w3-container w3-display-container w3-padding-16">
<h3><b>YUNHE</b></h3>
</div>
<div class="w3-padding-64 w3-text-light-grey w3-large" style="font-weight:bold">
<a href="#home" class="w3-bar-item w3-button">Home</a>
<a href="#news" class="w3-bar-item w3-button">News</a>
<a href="#projects" class="w3-bar-item w3-button">Projects</a>
<a href="#talks" class="w3-bar-item w3-button">Talks</a>
<a href="#publications" class="w3-bar-item w3-button">Research</a>
<a href="#service" class="w3-bar-item w3-button">Services</a>
<a href="#award" class="w3-bar-item w3-button">Awards</a>
</div>
</nav>
<!-- Top menu on small screens -->
<header class="w3-bar w3-top w3-hide-large w3-black w3-xlarge">
<div class="w3-bar-item w3-padding-24">YUNHE</div>
<a href="javascript:void(0)" class="w3-bar-item w3-button w3-padding-24 w3-right" style="font-stretch: extra-expanded;" onclick="w3_open()"><b>≡</b></a>
</div>
</header>
<!-- Overlay effect when opening sidebar on small screens -->
<div class="w3-overlay w3-hide-large" onclick="w3_close()" style="cursor:pointer" title="close side menu" id="myOverlay"></div>
<!-- !PAGE CONTENT! -->
<div class="w3-main" style="margin-left:150px">
<!-- Push down content on small screens -->
<div class="w3-hide-large" style="margin-top:83px"></div>
<!-- The Home Section -->
<div class="w3-container w3-center w3-padding-32" id="home">
<img style="width: 80%;max-width: 320px" alt="profile photo" src="images/Yunhe_new.jpg">
<h1>Yunhe Wang</h1>
<p class="w3-justify" style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;max-width:600px">
I am a senior researcher at <a href="https://www.noahlab.com.hk/">Huawei Noah's Ark Lab</a>, Beijing, where I work on deep learning, model compression, and computer vision, etc. Before that, I did my PhD at school of EECS, <a href="https://www.pku.edu.cn/">Peking University</a>, where I was co-advised by Prof. <a href="https://dblp.org/pers/hd/x/Xu_0006:Chao">Chao Xu</a></a> and Prof. <a href="https://scholar.google.com.sg/citations?user=RwlJNLcAAAAJ">Dacheng Tao</a></a>. I did my bachelors at school of science, <a href="https://en.xidian.edu.cn/">Xidian University</a>.
</p>
<p class="w3-center">
<a href="mailto:[email protected]">Email</a>  / 
<a href="https://scholar.google.com/citations?user=isizOkYAAAAJ">Google Scholar</a>  / 
<a href="https://www.zhihu.com/people/YunheWang"> Zhi Hu </a>  / 
<a href="https://dblp.org/pid/63/8217-1.html"> DBLP </a>
</p>
</tbody></table>
</div>
<!-- The News Section -->
<div class="w3-container w3-light-grey w3-padding-32" id="news">
<h2>News</h2>
<p><li> 05/2021, 2 papers have been accepted by <a href="https://icml.cc/">ICML 2022</a>. </li></p>
<p><li> 04/2022, 8 papers have been accepted by <a href="https://openaccess.thecvf.com/CVPR2022">CVPR 2022</a>. </li></p>
<p><li> 02/2022, Our suvery paper on vision transformer has been accepted by <a href="https://arxiv.org/pdf/2012.12556">IEEE TPAMI</a>.</li></p>
<p><li> 09/2021, 10 papers have been accepted by <a href="https://nips.cc/Conferences/2021">NeurIPS 2021</a>.</li></p>
<p><li> 09/2021, The journal version of versatile filters has been accepted by <a href="https://ieeexplore.ieee.org/iel7/34/4359286/09543586.pdf">IEEE TPAMI</a>.</li></p>
<p><li> 07/2021, 1 paper has been accepted by <a href="https://iccv2021.thecvf.com/home">ICCV 2021</a>.</li></p>
<p><li> 05/2021, 1 paper has been accepted by <a href="https://icml.cc/">ICML 2021</a>.</li></p>
<p><li> 05/2021, I have been selected as a Senior Area Chair for <a href="http://valser.org/">VALSE 2021</a>.</li></p>
<p><li> 03/2021, I accepted the invitation to serve as an Area Chair for <a href="https://nips.cc/Conferences/2021/">NeurIPS 2021</a>.</li></p>
<p><li> 03/2021, 9 papers have been accepted by <a href="http://cvpr2021.theRcvf.com/">CVPR 2021</a>.</li></p>
<!--
<p><li> 01/2021, I will give a talk about AdderNet at <a href="https://haet2021.github.io/speakers.html">HAET ICLR 2021 workshop</a>.</li></p>
<p><li> 12/2020, two papers have been accepted by <a href="https://aaai.org/Conferences/AAAI-21/">AAAI 2021</a>.</li></p>
<p><li> 11/2020, I accepted the invitation to serve as an Area Chair for <a href="https://icml.cc/Conferences/2021">ICML 2021</a>.</li></p>
<p><li> 09/2020, six papers have been accepted by <a href="https://nips.cc/Conferences/2020">NeurIPS 2020</a>.</li></p>
<p><li> 07/2020, one paper has been accepted by <a href="https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385">IEEE TNNLS</a>.</li></p>
<p><li> 07/2020, one paper has been accepted by <a href="https://eccv2020.eu/accepted-papers/">ECCV 2020</a>.</li></p>
<p><li> 06/2020, two papers have been accepted by <a href="https://icml.cc/Conferences/2020/AcceptedPapersInitial">ICML 2020</a>.</li></p>
<p><li> 07/2020, one paper has been accepted by <a href="http://2020.acmmm.org/accepted-paper-id-list.txt">ACM MM 2020</a>.</li></p>
<p><li> 02/2020, seven papers have been accepted by <a href="http://openaccess.thecvf.com/menu.py">CVPR 2020</a>.</li></p>
<p><li> 01/2020, one paper has been accepted by <a href="https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385">IEEE TNNLS</a>.</li></p>
<p><li> 11/2019, three papers have been accepted by <a href="https://aaai.org/Conferences/AAAI-20/wp-content/uploads/2020/01/AAAI-20-Accepted-Paper-List.pdf">AAAI 2020</a>.</li></p>
-->
</div>
<!-- The Projects Section -->
<div class="w3-container w3-padding-32" id="projects">
<h2>Recent Projects</h2>
<p class="w3-justify">
Actually, model compression is a kind of technique for developing portable deep neural networks with lower memory and computation costs. I have done several projects in Huawei including some smartphones' applications in 2019 and 2020 (e.g. Mate 30 and Honor V30). Currently, I am leading the AdderNet project, which aims to develop a series of deep learning models using only additions (<a href="https://www.reddit.com/r/MachineLearning/comments/ekw2s1/r_addernet_do_we_really_need_multiplications_in/">Discussions on Reddit</a>).
</p>
<h4><li>Adder Neural Networks</li></h4>
<img style="width:96%;" src="images/AdderNet.jpg">
<p class="w3-justify">
<a style="color: #447ec9" href="https://github.com/huawei-noah/AdderNet">Project Page</a> | <a style="color: #447ec9" href="https://arxiv.org/pdf/2101.10015.pdf">Hardware Implementation</a>
</p>
<p class="w3-justify">
I would like to say, <span style="color:red">AdderNet is very cool!</span> The initial idea was came up in about 2017 when climbing with some friends at Beijing. By replacing all convolutional layers (except the first and the last layers), we now can obtain comparable performance on ResNet architectures. In addition, to make the story more complete, we recent release the hardware implementation and some quantization methods. The results are quite encouraging, we can reduce both <strong>the energy consumption and thecircuit areas significantly without affecting the performance</strong>. Now, we are working on more applications to reduce the costs of launching AI algorithms such as low-level vision, detection, and NLP tasks.
</p>
<h4><li>GhostNet on MindSpore: SOTA Lightweight CV Networks</li></h4>
<img style="width:96%;" src="images/GhostNet.png">
<p class="w3-justify">
<a style="color: #447ec9" href="https://live.huawei.com/huaweiconnect/meeting/cn/5872.html">Huawei Connect (HC) 2020</a> | <a style="color: #447ec9" href="https://www.mindspore.cn/resources/hub">MindSpore Hub</a>
</p>
<p class="w3-justify">
The initial verison of GhostNet was accepted by CVPR 2020, which achieved SOTA performance on ImageNet: <span style="color:red">75.7%</span> top1 acc with only <span style="color:red">226M FLOPS</span>. In the current version, we release a series computer vision models (e.g. int8 quantization, detection, and larger networks) on <strong>MindsSpore 1.0</strong> and <strong>Mate 30 Pro (Kirin 990)</strong>.
</p>
<h4><li>AI on Ascend: Real-Time Video Style Transfer</li></h4>
<img style="width:32%;" src="images/atlas200.png">    <img style="width:60%;" src="images/video.gif">
<p class="w3-justify">
<a style="color: #447ec9" href="https://www.huaweicloud.com/intl/en-us/HDC.Cloud.html">Huawei Developer Conference (HDC) 2020</a> | <a style="color: #447ec9" href="https://developer.huaweicloud.com/exhibition/Atlas_neural_style.html">Online Demo</a>
</p>
<p class="w3-justify">
This project aims to develop a video style transfer system on the <strong>Huawei Atlas 200 DK AI developer Kit</strong>. The latency of the original model for processing one image is about <span style="color:red">630ms</span>. After accelerating it using our method, the lantency now is about <span style="color:red">40ms</span>.
</p>
</div>
<!-- The Talks Section -->
<div class="w3-container w3-light-grey w3-padding-32" id="talks">
<h2>Talks</h2>
<p><li> 10/2021, Vision Transformer at <a href="http://valser.org/2021/#/tutorial">VALSE 2021, Hangzhou, China</a>.</li></p>
<p><li> 05/2021, Adder Neural Network at <a href="https://haet2021.github.io/speakers.html">HAET ICLR 2021 workshop</a>. Thanks <a href="https://datawisdom.ca/">Vahid</a> for the invitation.</li></p>
<p><li> 06/2020, "<a href="http://valser.org/webinar/slide/slides/20200603/%E6%A8%A1%E5%9E%8B%E5%8E%8B%E7%BC%A9-%E5%B7%A5%E4%B8%9A%E7%95%8C%E5%92%8C%E5%AD%A6%E6%9C%AF%E7%95%8C%E7%9A%84%E5%B7%AE%E5%BC%82.pdf">AI on the Edge - Discussion on the Gap Between Industry and Academia</a>" at <a href="http://valser.org/"><strong>VALSE</strong></a> Webinar.</li></p>
<p><li> 05/2020, "<a href="https://www.bilibili.com/video/av925692420/">Edge AI: Progress and Future Directions</a>" at <a href="https://www.qbitai.com/"> <strong>QbitAI</strong></a> using <a href="https://www.bilibili.com/"><strong>bilibili</strong></a>.</li></p>
</div>
<!-- The Publications Section -->
<div class="w3-container w3-padding-32"" id="publications">
<h2>Research</h2>
<p class="w3-left-align" style="line-height:200%">
I'm interested in devleoping <strong>efficient models</strong> for computer vision (e.g. classification, detection, and super-resolution) using pruning, quantization, distilaltion, NAS, etc.
</p>
<h4> Conference Papers:</h4>
<ol>
<p>
<li><strong>Spatial-Channel Token Distillation for Vision MLPs</strong>
<br>
Yanxi Li, Xinghao Chen, Minjing Dong, Yehui Tang, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>ICML</em> 2022 | <a style="color: #447ec9" href="https://proceedings.mlr.press/v162/li22c/li22c.pdf">paper</a>
</p>
<p>
<li><strong>Federated Learning with Positive and Unlabeled Data</strong>
<br>
Xinyang Lin*, Hanting Chen*, Yixing Xu, Chao Xu, Xiaolin Gui, Yiping Deng, <strong>Yunhe Wang</strong>
<br>
<em>ICML</em> 2022 (* equal contribution) | <a style="color: #447ec9" href="https://proceedings.mlr.press/v162/lin22b/lin22b.pdf">paper</a>
</p>
<p>
<li><strong>CMT: Convolutional Neural Networks Meet Vision Transformers</strong>
<br>
Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Guo_CMT_Convolutional_Neural_Networks_Meet_Vision_Transformers_CVPR_2022_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/models/tree/master/research/cv/CMT">MindSpore code</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Efficient-AI-Backbones">Pytorch code</a>
</p>
<p>
<li><strong>Patch Slimming for Efficient Vision Transformers</strong>
<br>
Yehui Tang, Kai Han, <strong>Yunhe Wang</strong>, Chang Xu, Jianyuan Guo, Chao Xu, Dacheng Tao
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Tang_Patch_Slimming_for_Efficient_Vision_Transformers_CVPR_2022_paper.pdf">paper</a>
</p>
<p>
<li><strong>An Image Patch Is a Wave: Phase-Aware Vision MLP</strong>
<br>
Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li, Chao Xu, <strong>Yunhe Wang</strong>
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Tang_An_Image_Patch_Is_a_Wave_Phase-Aware_Vision_MLP_CVPR_2022_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/models/tree/master/research/cv/wave_mlp">MindSpore code</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/CV-Backbones/tree/master/wavemlp_pytorch">Pytorch code</a>
</p>
<p>
<li><strong>Instance-Aware Dynamic Neural Network Quantization</strong>
<br>
Zhenhua Liu, <strong>Yunhe Wang</strong>, Kai Han, Siwei Ma, Wen Gao
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_Instance-Aware_Dynamic_Neural_Network_Quantization_CVPR_2022_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Efficient-Computing">Pytorch code</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/models/tree/master/research/cv/DynamicQuant">MindSpore code</a>
</p>
<p>
<li><strong>Source-Free Domain Adaptation via Distribution Estimation</strong>
<br>
Ning Ding, Yixing Xu, Yehui Tang, Chao Xu, <strong>Yunhe Wang</strong>, Dacheng Tao
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Ding_Source-Free_Domain_Adaptation_via_Distribution_Estimation_CVPR_2022_paper.pdf">paper</a>
</p>
<p>
<li><strong>Multimodal Token Fusion for Vision Transformers</strong>
<br>
Yikai Wang, Xinghao Chen, Lele Cao, Wenbing Huang, Fuchun Sun, <strong>Yunhe Wang</strong>
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_Multimodal_Token_Fusion_for_Vision_Transformers_CVPR_2022_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/models/tree/master/research/cv/TokenFusion">MindSpore code</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/noah-research">Pytorch code</a>
</p>
<p>
<li><strong>Brain-Inspired Multilayer Perceptron With Spiking Neurons</strong>
<br>
Wenshuo Li, Hanting Chen, Jianyuan Guo, Ziyang Zhang, <strong>Yunhe Wang</strong>
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Li_Brain-Inspired_Multilayer_Perceptron_With_Spiking_Neurons_CVPR_2022_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/models/tree/master/research/cv/snn_mlp">MindSpore code</a>
</p>
<p>
<li><strong>Hire-MLP: Vision MLP via Hierarchical Rearrangement</strong>
<br>
Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han Wu, Chao Xu, Chang Xu, <strong>Yunhe Wang</strong>
<br>
<em>CVPR</em> 2022 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2022/papers/Guo_Hire-MLP_Vision_MLP_via_Hierarchical_Rearrangement_CVPR_2022_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/ggjy/Hire-Wave-MLP.pytorch">code</a>
</p>
<p>
<li><strong>Transformer in Transformer</strong>
<br>
Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/854d9fca60b4bd07f9bb215d59ef5561-Paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/CV-Backbones">code</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/models/tree/master/research/cv/TNT">MindSpore code</a>
</p>
<p>
<li><strong>Learning Frequency Domain Approximation for Binary Neural Networks</strong>
<br>
Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/d645920e395fedad7bbbed0eca3fe2e0-Paper.pdf">paper</a> | <span style="color:red"> Oral Presentation</span>
</p>
<p>
<li><strong>Dynamic Resolution Network</strong>
<br>
Mingjian Zhu*, Kai Han*, Enhua Wu, Qiulin Zhang, Ying Nie, Zhenzhong Lan, <strong>Yunhe Wang</strong>
<br>
<em>NeurIPS</em> 2021 (* equal contribution) | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/e56954b4f6347e897f954495eab16a88-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Post-Training Quantization for Vision Transformer</strong>
<br>
Zhenhua Liu, <strong>Yunhe Wang</strong>, Kai Han, Wei Zhang, Siwei Ma, Wen Gao
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Augmented Shortcuts for Vision Transformers</strong>
<br>
Yehui Tang, Kai Han, Chang Xu, An Xiao, Yiping Deng, Chao Xu, <strong>Yunhe Wang</strong>
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/818f4654ed39a1c147d1e51a00ffb4cb-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Adder Attention for Vision Transformer</strong>
<br>
Han Shu*, Jiahao Wang*, Hanting Chen, Lin Li, Yujiu Yang, <strong>Yunhe Wang</strong>
<br>
<em>NeurIPS</em> 2021 (* equal contribution) | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/a57e8915461b83adefb011530b711704-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Towards Stable and Robust Addernets</strong>
<br>
Minjing Dong, <strong>Yunhe Wang</strong>, Xinghao Chen, Chang Xu
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/6e3197aae95c2ff8fcab35cb730f6a86-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Handling Long-Tailed Feature Distribution in Addernets</strong>
<br>
Minjing Dong, <strong>Yunhe Wang</strong>, Xinghao Chen, Chang Xu
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Neural Architecture Dilation for Adversarial Robustness</strong>
<br>
Yanxi Li, Zhaohui Yang, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf">paper</a>
</p>
<p>
<li><strong>An Empirical Study of Adder Neural Networks for Object Detection</strong>
<br>
Xinghao Chen, Chang Xu, Minjing Dong, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>NeurIPS</em> 2021 | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2021/file/37693cfc748049e45d87b8c7d8b9aacd-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Learning Frequency-Aware Dynamic Network for Efficient Super-Resolution</strong>
<br>
Wenbin Xie, Dehua Song, Chang Xu, Chunjing Xu, Hui Zhang, <strong>Yunhe Wang</strong>
<br>
<em>ICCV</em> 2021 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content/ICCV2021/papers/Xie_Learning_Frequency-Aware_Dynamic_Network_for_Efficient_Super-Resolution_ICCV_2021_paper.pdf">paper</a>
</p>
<p>
<li><strong>Winograd Algorithm for AdderNet</strong>
<br>
Wenshuo Li, Hanting Chen, Mingqiang Huang, Xinghao Chen, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>ICML</em> 2021 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2105.05530.pdf">paper</a>
</p>
<p>
<li><strong>Distilling Object Detectors via Decoupled Features</strong>
<br>
Jianyuan Guo, Kai Han, <strong>Yunhe Wang</strong>, Wei Zhang, Chunjing Xu, Chang Xu
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2021/papers/Guo_Distilling_Object_Detectors_via_Decoupled_Features_CVPR_2021_paper.pdf">paper</a>
</p>
<p>
<li><strong>HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens</strong>
<br>
Zhaohui Yang, <strong>Yunhe Wang</strong>, Xinghao Chen, Jianyuan Guo, Wei Zhang,
<br>
Chao Xu, Chunjing Xu, Dacheng Tao, Chang Xu
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2005.14446.pdf">paper</a> | <a style="color: #447ec9" href="https://www.mindspore.cn/resources/hub/details?noah-cvlab/gpu/1.1/HourNAS-F_v1.0_cifar10">MindSpore code</a>
</p>
<p>
<li><strong>Manifold Regularized Dynamic Network Pruning</strong>
<br>
Yehui Tang, <strong>Yunhe Wang</strong>, Yixing Xu, Yiping Deng, Chao Xu, Dacheng Tao, Chang Xu
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2103.05861.pdf">paper</a> | <a style="color: #447ec9" href="https://www.mindspore.cn/resources/hub/details?noah-cvlab/gpu/1.1/manidp_v1.0_cifar10">MindSpore code</a>
</p>
<p>
<li><strong>Learning Student Networks in the Wild</strong>
<br>
Hanting Chen, Tianyu Guo, Chang Xu, Wenshuo Li, Chunjing Xu, Chao Xu, <strong>Yunhe Wang</strong>
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_Learning_Student_Networks_in_the_Wild_CVPR_2021_paper.pdf">paper</a>
</p>
<p>
<li><strong>AdderSR: Towards Energy Efficient Image Super-Resolution</strong>
<br>
Dehua Song*, <strong>Yunhe Wang</strong>*, Hanting Chen, Chang Xu, Chunjing Xu, Dacheng Tao
<br>
<em>CVPR</em> 2021 (* equal contribution) | <a style="color: #447ec9" href="https://arxiv.org/pdf/2009.08891.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/AdderNet">code</a> | <span style="color:red"> Oral Presentation</span>
</p>
<p>
<li><strong>ReNAS: Relativistic Evaluation of Neural Architecture Search</strong>
<br>
Yixing Xu, <strong>Yunhe Wang</strong>, Kai Han, Yehui Tang, Shangling Jui, Chunjing Xu, Chang Xu
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="https://arxiv.org/pdf/1910.01523.pdf">paper</a> | <span style="color:red"> Oral Presentation</span> | <a style="color: #447ec9" href="https://www.mindspore.cn/resources/hub/details?noah-cvlab/gpu/1.1/renas_v1.0_cifar10">MindSpore code</a>
</p>
<p>
<li><strong>Pre-Trained Image Processing Transformer</strong>
<br>
Hanting Chen, <strong>Yunhe Wang</strong>, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu,
<br>
Siwei Ma, Chunjing Xu, Chao Xu, Wen Gao
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2012.00364.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/IPT">MindSpore code</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Pretrained-IPT">Pytorch code</a>
</p>
<p>
<li><strong>Data-Free Knowledge Distillation For Image Super-Resolution</strong>
<br>
Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_Data-Free_Knowledge_Distillation_for_Image_Super-Resolution_CVPR_2021_paper.pdf">paper</a>
</p>
<p>
<li><strong>Positive-Unlabeled Data Purification in the Wild for Object Detection</strong>
<br>
Jianyuan Guo, Kai Han, Han Wu, Xinghao Chen, Chao Zhang, Chunjing Xu, Chang Xu, <strong>Yunhe Wang</strong>
<br>
<em>CVPR</em> 2021 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content/CVPR2021/papers/Guo_Positive-Unlabeled_Data_Purification_in_the_Wild_for_Object_Detection_CVPR_2021_paper.pdf">paper</a>
</p>
<p>
<li><strong>One-shot Graph Neural Architecture Search with Dynamic Search Space</strong>
<br>
Yanxi Li, Zean Wen, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>AAAI</em> 2021 <a style="color: #447ec9" href="https://www.aaai.org/AAAI21Papers/AAAI-3955.YangS.pdf">paper</a>
</p>
<p>
<li><strong>Adversarial Robustness through Disentangled Representations</strong>
<br>
Shuo Yang, Tianyu Guo, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>AAAI</em> 2021 <a style="color: #447ec9" href="https://www.aaai.org/AAAI21Papers/AAAI-3955.YangS.pdf">paper</a>
</p>
<p>
<li><strong>Kernel Based Progressive Distillation for Adder Neural Networks</strong>
<br>
Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>NeurIPS</em> 2020 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2009.13044.pdf">paper</a> | <span style="color:red"> Spotlight</span> | <a style="color: #447ec9" href="https://github.com/huawei-noah/AdderNet">code</a>
</p>
<p>
<li><strong>Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets</strong>
<br>
Kai Han*, <strong>Yunhe Wang</strong>*, Qiulin Zhang, Wei Zhang, Chunjing Xu, Tong Zhang
<br>
<em>NeurIPS</em> 2020 (* equal contribution) | <a style="color: #447ec9" href="https://arxiv.org/pdf/2010.14819.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/tinynet">code</a>
</p>
<p>
<li><strong>Residual Distillation: Towards Portable Deep Neural Networks without Shortcuts</strong>
<br>
Guilin Li*, Junlei Zhang*, <strong>Yunhe Wang</strong>, Chuanjian Liu, Matthias Tan, Yunfeng Lin,
<br>
Wei Zhang, Jiashi Feng, Tong Zhang
<br>
<em>NeurIPS</em> 2020 (* equal contribution) | <a style="color: #447ec9" href="https://proceedings.neurips.cc/paper/2020/file/657b96f0592803e25a4f07166fff289a-Paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/leoozy/JointRD_Neurips2020">code</a>
</p>
<p>
<li><strong>Searching for Low-Bit Weights in Quantized Neural Networks</strong>
<br>
Zhaohui Yang, <strong>Yunhe Wang</strong>, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, Chang Xu
<br>
<em>NeurIPS</em> 2020 | <a style="color: #447ec9" href="https://arxiv.org/abs/2009.08695.pdf">paper</a> | <a style="color: #447ec9" href="https://www.mindspore.cn/resources/hub/details?noah-cvlab/gpu/1.0/VGG-Small-low-bit_cifar10">code</a>
</p>
<p>
<li><strong>SCOP: Scientific Control for Reliable Neural Network Pruning</strong>
<br>
Yehui Tang, <strong>Yunhe Wang</strong>, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, Chang Xu
<br>
<em>NeurIPS</em> 2020 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2010.10732">paper</a> | <a style="color: #447ec9" href="https://www.mindspore.cn/resources/hub/details?2593/noah-cvlab/gpu/1.0/resnet-0.65x_v1.0_oxford_pets">code</a>
</p>
<p>
<li><strong>Adapting Neural Architectures Between Domains</strong>
<br>
Yanxi Li, Zhaohui Yang, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>NeurIPS</em> 2020 | <a style="color: #447ec9" href="https://papers.nips.cc/paper/2020/file/08f38e0434442128fab5ead6217ca759-Paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/liyxi/AdaptNAS">code</a>
</p>
<p>
<li><strong>Discernible Image Compression</strong>
<br>
Zhaohui Yang, <strong>Yunhe Wang</strong>, Chang Xu, Peng Du, Chao Xu, Chunjing Xu, Qi Tian
<br>
<em>ACM MM</em> 2020 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2002.06810">paper</a>
</p>
<p>
<li><strong>Optical Flow Distillation: Towards Efficient and Stable Video Style Transfer</strong>
<br>
Xinghao Chen*, Yiman Zhang*, <strong>Yunhe Wang</strong>, Han Shu, Chunjing Xu, Chang Xu
<br>
<em>ECCV</em> 2020 (* equal contribution) | <a style="color: #447ec9" href="https://arxiv.org/pdf/2007.05146.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/AtlasCase/sample-styletransfer">code</a>
</p>
<p>
<li><strong>Learning Binary Neurons with Noisy Supervision</strong>
<br>
Kai Han, <strong>Yunhe Wang</strong>, Yixing Xu, Chunjing Xu, Enhua Wu, Chang Xu
<br>
<em>ICML</em> 2020 | <a style="color: #447ec9" href="https://proceedings.icml.cc/static/paper_files/icml/2020/181-Paper.pdf">paper</a>
</p>
<p>
<li><strong>Neural Architecture Search in a Proxy Validation Loss Landscape</strong>
<br>
Yanxi Li, Minjing Dong, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>ICML</em> 2020 | <a style="color: #447ec9" href="https://proceedings.icml.cc/static/paper_files/icml/2020/439-Paper.pdf">paper</a>
<p>
<li><strong>On Positive-Unlabeled Classification in GAN</strong>
<br>
Tianyu Guo, Chang Xu, Jiajun Huang, <strong>Yunhe Wang</strong>, Boxin Shi, Chao Xu, Dacheng Tao
<br>
<em>CVPR</em> 2020 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_On_Positive-Unlabeled_Classification_in_GAN_CVPR_2020_paper.pdf">paper</a>
</p>
<p>
<li><strong>CARS: Continuous Evolution for Efficient Neural Architecture Search</strong>
<br>
Zhaohui Yang, <strong>Yunhe Wang</strong>, Xinghao Chen, Boxin Shi, Chao Xu, Chunjing Xu, Qi Tian, Chang Xu
<br>
<em>CVPR</em> 2020 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_CARS_Continuous_Evolution_for_Efficient_Neural_Architecture_Search_CVPR_2020_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/CARS">code</a>
</p>
<p>
<li><strong>AdderNet: Do We Really Need Multiplications in Deep Learning?</strong>
<br>
Hanting Chen*, <strong>Yunhe Wang</strong>*, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, Chang Xu
<br>
<em>CVPR</em> 2020 (* equal contribution) | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_AdderNet_Do_We_Really_Need_Multiplications_in_Deep_Learning_CVPR_2020_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/AdderNet">code</a> | <span style="color:red"> Oral Presentation</span>
<br>
</p>
<p>
<li><strong>A Semi-Supervised Assessor of Neural Architectures</strong>
<br>
Yehui Tang, <strong>Yunhe Wang</strong>, Yixing Xu, Hanting Chen, Boxin Shi, Chao Xu, Chunjing Xu, Qi Tian, Chang Xu
<br>
<em>CVPR</em> 2020 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Tang_A_Semi-Supervised_Assessor_of_Neural_Architectures_CVPR_2020_paper.pdf">paper</a>
</p>
<p>
<li><strong>Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection</strong>
<br>
Jianyuan Guo, Kai Han, <strong>Yunhe Wang</strong>, Chao Zhang, Zhaohui Yang, Han Wu, Xinghao Chen, Chang Xu
<br>
<em>CVPR</em> 2020 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_Hit-Detector_Hierarchical_Trinity_Architecture_Search_for_Object_Detection_CVPR_2020_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/ggjy/HitDet.pytorch">code</a>
</p>
<p>
<li><strong>Frequency Domain Compact 3D Convolutional Neural Networks</strong>
<br>
Hanting Chen, <strong>Yunhe Wang</strong>, Han Shu, Yehui Tang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, Chang Xu
<br>
<em>CVPR</em> 2020 | <a style="color: #447ec9" href="http://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Frequency_Domain_Compact_3D_Convolutional_Neural_Networks_CVPR_2020_paper.pdf">paper</a>
</p>
<li><strong>GhostNet: More Features from Cheap Operations</strong>
<br>
Kai Han, <strong>Yunhe Wang</strong>, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu
<br>
<em>CVPR</em> 2020 | <a style="color: #447ec9" href="https://openaccess.thecvf.com/content_CVPR_2020/papers/Han_GhostNet_More_Features_From_Cheap_Operations_CVPR_2020_paper.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/ghostnet">code</a>
</p>
<p>
<li><strong>Beyond Dropout: Feature Map Distortion to Regularize Deep Neural Networks</strong>
<br>
Yehui Tang, <strong>Yunhe Wang</strong>, Yixing Xu, Boxin Shi, Chao Xu, Chunjing Xu, Chang Xu
<br>
<em>AAAI</em> 2020 | <a style="color: #447ec9" href="data/2020 AAAI dropblock.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/disout">code</a>
</p>
<p>
<li><strong>DropNAS: Grouped Operation Dropout for Differentiable Architecture Search</strong>
<br>
Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang, <strong>Yunhe Wang</strong>, Zhenguo Li, Yong Yu
<br>
<em>IJCAI</em> 2020 | <a style="color: #447ec9" href="https://www.ijcai.org/Proceedings/2020/0322.pdf">paper</a>
</p>
<p>
<li><strong>Distilling Portable Generative Adversarial Networks for Image Translation</strong>
<br>
Hanting Chen, <strong>Yunhe Wang</strong>, Han Shu, Changyuan Wen, Chunjing Xu, Boxin Shi, Chao Xu, Chang Xu
<br>
<em>AAAI</em> 2020 | <a style="color: #447ec9" href="data/2020 AAAI GAN Distillation.pdf">paper</a>
</p>
<p>
<li><strong>Efficient Residual Dense Block Search for Image Super-Resolution</strong>
<br>
Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>AAAI</em>, 2020 | <a style="color: #447ec9" href="data/2020 AAAI SR NAS.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/vega">code</a>
</p>
<p>
<li><strong>Positive-Unlabeled Compression on the Cloud</strong>
<br>
Yixing Xu, <strong>Yunhe Wang</strong>, Hanting Chen, Kai Han, Chunjing Xu, Dacheng Tao, Chang Xu
<br>
<em>NeurIPS</em> 2019 | <a style="color: #447ec9" href="data/2019 NIPS PU Compression.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Data-Efficient-Model-Compression/tree/master/pu_compress">code</a> | <a style="color: #447ec9" href="http://papers.nips.cc/paper/8525-positive-unlabeled-compression-on-the-cloud-supplemental.zip">supplement</a>
</p>
<p>
<li><strong>Data-Free Learning of Student Networks</strong>
<br>
Hanting Chen,<strong>Yunhe Wang</strong>, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi,
<br>
Chunjing Xu, Chao Xu, Qi Tian
<br>
<em>ICCV</em> 2019 | <a style="color: #447ec9" href="data/2019 ICCV DAFL.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Data-Efficient-Model-Compression/tree/master/DAFL">code</a>
</p>
<p>
<li><strong>Co-Evolutionary Compression for Unpaired Image Translation</strong>
<br>
Han Shu, <strong>Yunhe Wang</strong>, Xu Jia, Kai Han, Hanting Chen, Chunjing Xu, Qi Tian, Chang Xu
<br>
<em>ICCV</em> 2019 | <a style="color: #447ec9" href="data/2019 ICCV Co-Evolution Pruning.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/GAN-pruning">code</a>
</p>
<p>
<li><strong>Searching for Accurate Binary Neural Architectures</strong>
<br>
Mingzhu Shen, Kai Han, Chunjing Xu, <strong>Yunhe Wang</strong>
<br>
<em>ICCV Neural Architectures Workshop</em> 2019 | <a style="color: #447ec9" href="data/2019 ICCVw Bianry Search.pdf">paper</a>
</p>
<p>
<li><strong>LegoNet: Efficient Convolutional Neural Networks with Lego Filters</strong>
<br>
Zhaohui Yang, <strong>Yunhe Wang</strong>, Hanting Chen, Chuanjian Liu, Boxin Shi, Chao Xu, Chunjing Xu, Chang Xu
<br>
<em>ICML</em> 2019 | <a style="color: #447ec9" href="data/2019 ICML LegoNet.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/LegoNet">code</a>
</p>
<p>
<li><strong>Learning Instance-wise Sparsity for Accelerating Deep Models</strong>
<br>
Chuanjian Liu, <strong>Yunhe Wang</strong>, Kai Han, Chunjing Xu, Chang Xu
<br>
<em>IJCAI</em> 2019 | <a style="color: #447ec9" href="data/2019 IJCAI Instance Sparsity.pdf">paper</a>
</p>
<p>
<li><strong>Attribute Aware Pooling for Pedestrian Attribute Recognition</strong>
<br>
Kai Han, <strong>Yunhe Wang</strong>, Han Shu, Chuanjian Liu, Chunjing Xu, Chang Xu
<br>
<em>IJCAI</em> 2019 | <a style="color: #447ec9" href="https://www.ijcai.org/proceedings/2019/0341.pdf">paper</a>
</p>
<p>
<li><strong>Crafting Efficient Neural Graph of Large Entropy</strong>
<br>
Minjing Dong, Hanting Chen, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>IJCAI</em> 2019 | <a style="color: #447ec9" href="data/2019 IJCAI Graph Pruning.pdf">paper</a>
</p>
<p>
<li><strong>Low Resolution Visual Recognition via Deep Feature Distillation</strong>
<br>
Mingjian Zhu, Kai Han, Chao Zhang, Jinlong Lin, <strong>Yunhe Wang</strong>
<br>
<em>ICASSP</em> 2019 | <a style="color: #447ec9" href="data/2019 ICASSP LR Distillation.pdf">paper</a>
</p>
<p>
<li><strong>Learning Versatile Filters for Efficient Convolutional Neural Networks</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Chunjing Xu, Chao Xu, Dacheng Tao
<br>
<em>NeurIPS</em> 2018 | <a style="color: #447ec9" href="data/2018 NIPS Versatile Filter.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Versatile-Filters">code</a> | <a style="color: #447ec9" href="https://papers.nips.cc/paper/7433-learning-versatile-filters-for-efficient-convolutional-neural-networks-supplemental.zip">supplement</a>
</p>
<p>
<li><strong>Towards Evolutionary Compression</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Jiayan Qiu, Chao Xu, Dacheng Tao
<br>
<em>SIGKDD</em> 2018 | <a style="color: #447ec9" href="data/2018 KDD GA pruning.pdf">paper</a>
</p>
<p>
<li><strong>Autoencoder Inspired Unsupervised Feature Selection</strong>
<br>
Kai Han, <strong>Yunhe Wang</strong>, Chao Zhang, Chao Li, Chao Xu
<br>
<em>ICASSP</em> 2018 | <a style="color: #447ec9" href="data/2018 ICASSP Feature Selector.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/NoahLuffy/AEFS">code</a>
</p>
<p>
<li><strong>Adversarial Learning of Portable Student Networks</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Chao Xu, Dacheng Tao
<br>
<em>AAAI</em> 2018 | <a style="color: #447ec9" href="data/2018 AAAI Adversarial Distillation.pdf">paper</a>
</p>
<p>
<li><strong>Beyond Filters: Compact Feature Map for Portable Deep Model</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Chao Xu, Dacheng Tao
<br>
<em>ICML</em> 2017 | <a style="color: #447ec9" href="data/2017 ICML Beyond Filters.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/YunheWang/RedCNN">code</a> | <a style="color: #447ec9" href="http://proceedings.mlr.press/v70/wang17m/wang17m-supp.zip">supplement</a>
</p>
<p>
<li><strong>Beyond RPCA: Flattening Complex Noise in the Frequency Domain</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Chao Xu, Dacheng Tao
<br>
<em>AAAI</em> 2017 | <a style="color: #447ec9" href="data/2017 AAAI Beyond RPCA.pdf">paper</a>
</p>
<p>
<li><strong>Privileged Multi-Label Learning</strong>
<br>
Shan You, Chang Xu, <strong>Yunhe Wang</strong>, Chao Xu, Dacheng Tao
<br>
<em>IJCAI</em> 2017 | <a style="color: #447ec9" href="data/2017 IJCAI Privileged.pdf">paper</a>
</p>
<p>
<li><strong>CNNpack: Packing Convolutional Neural Networks in the Frequency Domain</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Shan You, Chao Xu, Dacheng Tao
<br>
<em>NeurIPS</em> 2016 | <a style="color: #447ec9" href="data/2016 NIPS CNNpack.pdf">paper</a> | <a style="color: #447ec9" href="https://papers.nips.cc/paper/6390-cnnpack-packing-convolutional-neural-networks-in-the-frequency-domain-supplemental.zip">supplement</a>
</p>
</ol>
<h4> Journal Papers:</h4>
<ol>
<p>
<li><strong>GhostNets on Heterogeneous Devices via Cheap Operations</strong>
<br>
Kai Han, <strong>Yunhe Wang</strong>, Chang Xu, Jianyuan Guo, Chunjing Xu, Enhua Wu, Qi Tian
<br>
<em>IJCV</em> 2022 | <a style="color: #447ec9" href="https://link.springer.com/content/pdf/10.1007/s11263-022-01575-y.pdf">paper</a> | <a style="color: #447ec9" href="https://gitee.com/mindspore/models/tree/master/research/cv/ghostnet_d">MindSpore code</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Efficient-AI-Backbones">Pytorch code</a>
</p>
<p>
<li><strong>A Survey on Visual Transformer</strong>
<br>
Kai Han, <strong>Yunhe Wang</strong>, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, Dacheng Tao
<br>
<em>IEEE TPAMI</em> 2022 | <a style="color: #447ec9" href="https://arxiv.org/pdf/2012.12556">paper</a>
</p>
<p>
<li><strong>Learning Versatile Convolution Filters for Efficient Visual Recognition</strong>
<br>
Kai Han*, <strong>Yunhe Wang</strong>*, Chang Xu, Chunjing Xu, Enhua Wu, Dacheng Tao
<br>
<em>IEEE TPAMI</em> 2021 (* equal contribution) | <a style="color: #447ec9" href="https://ieeexplore.ieee.org/iel7/34/4359286/09543586.pdf">paper</a> | <a style="color: #447ec9" href="https://github.com/huawei-noah/Versatile-Filters">code</a>
</p>
<p>
<li><strong>Adversarial Recurrent Time Series Imputation</strong>
<br>
Shuo Yang, Minjing Dong, <strong>Yunhe Wang</strong>, Chang Xu
<br>
<em>IEEE TNNLS</em> 2020 |<a style="color: #447ec9" href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9158560">paper</a>
</p>
<p>
<li><strong>Learning Student Networks via Feature Embedding</strong>
<br>
Hanting Chen, <strong>Yunhe Wang</strong>, Chang Xu, Chao Xu, Dacheng Tao
<br>
<em>IEEE TNNLS</em> 2020 | <a style="color: #447ec9" href="https://arxiv.org/pdf/1812.06597">paper</a>
</p>
<p>
<li><strong>Packing Convolutional Neural Networks in the Frequency Domain</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Chao Xu, Dacheng Tao
<br>
<em>IEEE TPAMI</em> 2018 | <a style="color: #447ec9" href="data/2018 PAMI CNNpack.pdf">paper</a>
</p>
<p>
<li><strong>DCT Regularized Extreme Visual Recovery</strong>
<br>
<strong>Yunhe Wang</strong>, Chang Xu, Shan You, Chao Xu, Dacheng Tao
<br>
<em>IEEE TIP</em> 2017 | <a style="color: #447ec9" href="data/2017 TIP DCT norm.pdf">paper</a>
</p>
<p>
<li><strong>DCT Inspired Feature Transform for Image Retrieval and Reconstruction</strong>
<br>
<strong>Yunhe Wang</strong>, Miaojing Shi, Shan You, Chao Xu
<br>
<em>IEEE TIP</em> 2016 | <a style="color: #447ec9" href="data/2016 TIP DCT feature.pdf">paper</a>
</p>
</ol>
</p>
</div>
<!-- The Services Section -->
<div class="w3-container w3-light-grey w3-padding-32" id="service">
<h2>Services</h2>
<p><li> Area Chair of <a href="https://icml.cc/Conferences/2021">ICML 2021</a>, <a href="https://nips.cc/Conferences/2021/">NeurIPS 2021</a>.</p>
<p><li> Senior Program Committee Members of <a href="https://ijcai-21.org/">IJCAI 2021</a>, <a href="https://www.ijcai20.org/">IJCAI 2020</a> and <a href="https://www.ijcai19.org/program-committee.html">IJCAI 2019</a>.</p>
<p><li> Journal Reviewers of <a href="https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34">IEEE T-PAMI</a>, <a href="https://www.springer.com/journal/11263">IJCV</a>, <a href="https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83">IEEE T-IP</a>, <a href="https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385">IEEE T-NNLS</a>, <a href="https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6046">IEEE T-MM</a>, <a href="https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69">IEEE T-KDE</a>, etc.</p>
<p><li> Program Committee Members of ICCV 2021, AAAI 2021, ICLR 2021, NeurIPS 2020, ICML 2020, ECCV 2020, CVPR 2020, ICLR 2020, AAAI 2020, ICCV 2019, CVPR 2019, ICLR 2019, AAAI 2019, IJCAI 2018, AAAI 2018, NeurIPS 2018, etc.</p>
</div>
<!-- The Awards Section -->
<div class="w3-container w3-padding-32" id="award">
<h2>Awards</h2>
<p><li> 2020, <a href="https://mp.weixin.qq.com/s/dORL01lgFNDHgjp3KMJmiQ">Nomination for Outstanding Youth Paper Award</a>, <a href="https://worldaic.com.cn/portal/en/aboutus.html">WAIC</a></p>
<p><li> 2017, <a href="https://research.google/outreach/phd-fellowship/recipients/?category=2017">Google PhD Fellowship</a></p>
<p><li> 2017, <a href="http://scholarship.baidu.com/">Baidu Scholarship</a></p>
<p><li> 2017, President's PhD Scholarship, Peking University</p>
<p><li> 2017, National Scholarship for Graduate Students</p>
<p><li> 2016, National Scholarship for Graduate Students</p>
</div>
<div class="w3-light-grey w3-center w3-padding-24">
Welcome to use this website's <a href="https://github.com/YunheWang/HomePage">source code</a>, just add a link back to here. <a href="https://www.wangyunhe.site/">✩</a></br>
<!-- Default Statcounter code for Yunhe Wang's Homepage
https://www.wangyunhe.site -->
No.
<script type="text/javascript">
var sc_project=12347113;
var sc_invisible=0;
var sc_security="21aca5d1";
var sc_https=1;
var scJsHost = "https://";
document.write("<sc"+"ript type='text/javascript' src='" + scJsHost+
"statcounter.com/counter/counter.js'></"+"script>");
</script> Visitor Since Feb 2022. Powered by <a href="https://www.w3schools.com/w3css/default.asp" title="W3.CSS" target="_blank" class="w3-hover-opacity">w3.css</a>
<noscript>
<div class="statcounter"><a title="Web Analytics Made Easy -
StatCounter" href="https://statcounter.com/" target="_blank"><img
class="statcounter" src="https://c.statcounter.com/12347113/0/21aca5d1/0/"
alt="Web Analytics Made Easy - StatCounter"></a></div>
</noscript>
<!-- End of Statcounter Code -->
</div>
<!-- End page content -->
</div>
<script>
// Accordion
function myAccFunc() {
var x = document.getElementById("demoAcc");
if (x.className.indexOf("w3-show") == -1) {
x.className += " w3-show";
} else {
x.className = x.className.replace(" w3-show", "");
}
}
// Click on the "Jeans" link on page load to open the accordion for demo purposes
document.getElementById("myBtn").click();
// Open and close sidebar
function w3_open() {
document.getElementById("mySidebar").style.display = "block";
document.getElementById("myOverlay").style.display = "block";
}
function w3_close() {
document.getElementById("mySidebar").style.display = "none";
document.getElementById("myOverlay").style.display = "none";
}
</script>
</body>
</html>