forked from mit-han-lab/efficientvit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cls_model.py
91 lines (70 loc) · 2.97 KB
/
train_cls_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han
# International Conference on Computer Vision (ICCV), 2023
import argparse
import os
from efficientvit.apps import setup
from efficientvit.apps.utils import dump_config, parse_unknown_args
from efficientvit.cls_model_zoo import create_cls_model
from efficientvit.clscore.data_provider import ImageNetDataProvider
from efficientvit.clscore.trainer import ClsRunConfig, ClsTrainer
from efficientvit.models.nn.drop import apply_drop_func
parser = argparse.ArgumentParser()
parser.add_argument("config", metavar="FILE", help="config file")
parser.add_argument("--path", type=str, metavar="DIR", help="run directory")
parser.add_argument("--gpu", type=str, default=None) # used in single machine experiments
parser.add_argument("--manual_seed", type=int, default=0)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--fp16", action="store_true")
# initialization
parser.add_argument("--rand_init", type=str, default="[email protected]")
parser.add_argument("--last_gamma", type=float, default=0)
parser.add_argument("--auto_restart_thresh", type=float, default=1.0)
parser.add_argument("--save_freq", type=int, default=1)
def main():
# parse args
args, opt = parser.parse_known_args()
opt = parse_unknown_args(opt)
# setup gpu and distributed training
setup.setup_dist_env(args.gpu)
# setup path, update args, and save args to path
os.makedirs(args.path, exist_ok=True)
dump_config(args.__dict__, os.path.join(args.path, "args.yaml"))
# setup random seed
setup.setup_seed(args.manual_seed, args.resume)
# setup exp config
config = setup.setup_exp_config(args.config, recursive=True, opt_args=opt)
# save exp config
setup.save_exp_config(config, args.path)
# setup data provider
data_provider = setup.setup_data_provider(config, [ImageNetDataProvider], is_distributed=True)
# setup run config
run_config = setup.setup_run_config(config, ClsRunConfig)
# setup model
model = create_cls_model(config["net_config"]["name"], False, dropout=config["net_config"]["dropout"])
apply_drop_func(model.backbone.stages, config["backbone_drop"])
# setup trainer
trainer = ClsTrainer(
path=args.path,
model=model,
data_provider=data_provider,
auto_restart_thresh=args.auto_restart_thresh,
)
# initialization
setup.init_model(
trainer.network,
rand_init=args.rand_init,
last_gamma=args.last_gamma,
)
# prep for training
trainer.prep_for_training(run_config, config["ema_decay"], args.fp16)
# resume
if args.resume:
trainer.load_model()
trainer.data_provider = setup.setup_data_provider(config, [ImageNetDataProvider], is_distributed=True)
else:
trainer.sync_model()
# launch training
trainer.train(save_freq=args.save_freq)
if __name__ == "__main__":
main()