forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastmath.jl
237 lines (216 loc) · 8.72 KB
/
fastmath.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# This file is a part of Julia. License is MIT: https://julialang.org/license
# fast math
@testset "check expansions" begin
@test macroexpand(Main, :(@fastmath 1+2)) == :(Base.FastMath.add_fast(1,2))
@test macroexpand(Main, :(@fastmath +)) == :(Base.FastMath.add_fast)
@test macroexpand(Main, :(@fastmath min(1))) == :(Base.FastMath.min_fast(1))
@test macroexpand(Main, :(@fastmath min)) == :(Base.FastMath.min_fast)
@test macroexpand(Main, :(@fastmath x.min)) == :(x.min)
@test macroexpand(Main, :(@fastmath sincos(x))) == :(Base.FastMath.sincos_fast(x))
end
const one32 = one(Float32)
const eps32 = eps(Float32)
const eps32_2 = eps32/2
# Note: Cannot use local functions since these are not yet optimized
fm_ieee_32(x) = x + eps32_2 + eps32_2
fm_fast_32(x) = @fastmath x + eps32_2 + eps32_2
const one64 = one(Float64)
const eps64 = eps(Float64)
const eps64_2 = eps64/2
# Note: Cannot use local functions since these are not yet optimized
fm_ieee_64(x) = x + eps64_2 + eps64_2
fm_fast_64(x) = @fastmath x + eps64_2 + eps64_2
fm_ieee_64_upd(x) = (r=x; r+=eps64_2; r+=eps64_2)
fm_fast_64_upd(x) = @fastmath (r=x; r+=eps64_2; r+=eps64_2)
@testset "basic arithmetic" begin
@test fm_ieee_32(one32) == one32
@test (fm_fast_32(one32) == one32 ||
fm_fast_32(one32) == one32 + eps32 > one32)
@test fm_ieee_64(one64) == one64
@test (fm_fast_64(one64) == one64 ||
fm_fast_64(one64) == one64 + eps64 > one64)
# check updating operators
@test fm_ieee_64_upd(one64) == one64
@test (fm_fast_64_upd(one64) == one64 ||
fm_fast_64_upd(one64) == one64 + eps64 > one64)
let epsf = 1.0f0/2^15, one_epsf = 1+epsf
@test @fastmath(one_epsf * one_epsf - 1) ≈ Float32(65537/1073741824)
end
let eps = 1.0/2^30, one_eps = 1+eps
@test @fastmath(one_eps * one_eps - 1) ≈ 2147483649/1152921504606846976
end
for T in (Float32, Float64, BigFloat)
zero = convert(T, 0)
one = convert(T, 1) + eps(T)
two = convert(T, 2) + 1//10
three = convert(T, 3) + 1//100
@test @fastmath(+two) ≈ +two
@test @fastmath(-two) ≈ -two
@test @fastmath(zero+one+two) ≈ zero+one+two
@test @fastmath(zero-one-two) ≈ zero-one-two
@test @fastmath(one*two*three) ≈ one*two*three
@test @fastmath(one/two/three) ≈ one/two/three
@test @fastmath(rem(two,three)) ≈ rem(two,three)
@test @fastmath(mod(two,three)) ≈ mod(two,three)
@test @fastmath(cmp(two,two)) == cmp(two,two)
@test @fastmath(cmp(two,three)) == cmp(two,three)
@test @fastmath(cmp(three,two)) == cmp(three,two)
@test @fastmath(one/zero) == convert(T,Inf)
@test @fastmath(-one/zero) == -convert(T,Inf)
@test isnan(@fastmath(zero/zero)) # must not throw
for x in (zero, two, convert(T, Inf), convert(T, NaN))
@test @fastmath(isfinite(x))
@test !@fastmath(isinf(x))
@test !@fastmath(isnan(x))
@test !@fastmath(issubnormal(x))
end
end
for T in (ComplexF32, ComplexF64, Complex{BigFloat})
zero = convert(T,0)
one = convert(T,1) + im*eps(real(convert(T,1)))
two = convert(T,2) + im//10
three = convert(T,3) + im//100
@test @fastmath(+two) ≈ +two
@test @fastmath(-two) ≈ -two
@test @fastmath(zero+one+two) ≈ zero+one+two
@test @fastmath(zero-one-two) ≈ zero-one-two
@test @fastmath(one*two*three) ≈ one*two*three
@test @fastmath(one/two/three) ≈ one/two/three
@test @fastmath(three == two) == (three == two)
@test @fastmath(three != two) == (three != two)
@test isnan(@fastmath(one/zero)) # must not throw
@test isnan(@fastmath(-one/zero)) # must not throw
@test isnan(@fastmath(zero/zero)) # must not throw
for x in (zero, two, convert(T, Inf), convert(T, NaN))
@test @fastmath(isfinite(x))
@test !@fastmath(isinf(x))
@test !@fastmath(isnan(x))
@test !@fastmath(issubnormal(x))
end
end
end
# math functions
@testset "real arithmetic" begin
for T in (Float16, Float32, Float64, BigFloat)
half = 1/convert(T,2)
third = 1/convert(T,3)
for f in (:+, :-, :abs, :abs2, :conj, :inv, :sign,
:acos, :asin, :asinh, :atan, :atanh, :cbrt, :cos, :cosh,
:exp10, :exp2, :exp, :log10, :log1p,
:log2, :log, :sin, :sinh, :sqrt, :tan, :tanh,
:min, :max)
@eval begin
@test @fastmath($f($half)) ≈ $f($half)
@test @fastmath($f($third)) ≈ $f($third)
end
end
if T != Float16
for f in (:expm1,)
@eval begin
@test @fastmath($f($half)) ≈ $f($half)
@test @fastmath($f($third)) ≈ $f($third)
end
end
end
for f in (:acosh,)
@eval begin
@test @fastmath($f(1+$half)) ≈ $f(1+$half)
@test @fastmath($f(1+$third)) ≈ $f(1+$third)
end
end
for f in (:sincos,)
@eval begin
@test all(@fastmath($f($half)) .≈ $f($half))
@test all(@fastmath($f($third)) .≈ $f($third))
end
end
for f in (:+, :-, :*, :/, :%, :(==), :!=, :<, :<=, :>, :>=, :^,
:atan, :hypot, :max, :min, :log)
@eval begin
@test @fastmath($f($half, $third)) ≈ $f($half, $third)
@test @fastmath($f($third, $half)) ≈ $f($third, $half)
end
end
# issue 31795
for f in (:min, :max)
@eval begin
@test @fastmath($f($half, $third, 1+$half)) ≈ $f($half, $third, 1+$half)
end
end
for f in (:minmax,)
@eval begin
@test @fastmath($f($half, $third)[1]) ≈ $f($half, $third)[1]
@test @fastmath($f($half, $third)[2]) ≈ $f($half, $third)[2]
@test @fastmath($f($third, $half)[1]) ≈ $f($third, $half)[1]
@test @fastmath($f($third, $half)[2]) ≈ $f($third, $half)[2]
end
end
end
end
@testset "complex arithmetic" begin
for T in (ComplexF32, ComplexF64, Complex{BigFloat})
half = (1+1im)/T(2)
third = (1-1im)/T(3)
# some of these functions promote their result to double
# precision, but we want to check equality at precision T
rtol = Base.rtoldefault(real(T))
for f in (:+, :-, :abs, :abs2, :conj, :inv, :sign,
:acos, :acosh, :asin, :asinh, :atan, :atanh, :cis, :cos,
:cosh, :exp10, :exp2, :exp, :expm1, :log10, :log1p,
:log2, :log, :sin, :sinh, :sqrt, :tan, :tanh)
@eval begin
@test @fastmath($f($half)) ≈ $f($half) rtol=$rtol
@test @fastmath($f($third)) ≈ $f($third) rtol=$rtol
end
end
for f in (:+, :-, :*, :/, :(==), :!=, :^, :log)
@eval begin
@test @fastmath($f($half, $third)) ≈ $f($half, $third) rtol=$rtol
@test @fastmath($f($third, $half)) ≈ $f($third, $half) rtol=$rtol
end
end
end
end
@testset "mixed real/complex arithmetic" begin
for T in (Float32, Float64, BigFloat)
CT = Complex{T}
half = 1/T(2)
third = 1/T(3)
chalf = (1+1im)/CT(2)
cthird = (1-1im)/CT(3)
for f in (:+, :-, :*, :/, :(==), :!=, :^, :log)
@eval begin
@test @fastmath($f($chalf, $third)) ≈ $f($chalf, $third)
@test @fastmath($f($half, $cthird)) ≈ $f($half, $cthird)
@test @fastmath($f($cthird, $half)) ≈ $f($cthird, $half)
@test @fastmath($f($third, $chalf)) ≈ $f($third, $chalf)
end
end
@test @fastmath(third^3) ≈ third^3
@test @fastmath(chalf/third) ≈ chalf/third
@test @fastmath(chalf^3) ≈ chalf^3
@test @fastmath(cis(third)) ≈ cis(third)
end
end
@testset "issue #10544" begin
a = fill(1.,2,2)
b = fill(1.,2,2)
@test @fastmath(a[1] += 2.0) ≈ (b[1] += 2.0)
@test @fastmath(a[2] -= 2.0) ≈ (b[2] -= 2.0)
@test @fastmath(a[1,1] *= 2.0) ≈ (b[1,1] *= 2.0)
@test @fastmath(a[2,2] /= 2.0) ≈ (b[2,2] /= 2.0)
@test @fastmath(a[1,2] ^= 2.0) ≈ (b[1,2] ^= 2.0)
# test fallthrough for unsupported ops
local c = 0
@test @fastmath(c |= 1) == 1
end
@testset "issue #23218" begin
a = zeros(1)
b = [1.0]
idx = (1,)
@fastmath a[idx...] += b[idx...]
@test a == b
end
@testset "literal powers" begin
@test @fastmath(2^-2) == @fastmath(2.0^-2) == 0.25
end