forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsets.jl
663 lines (616 loc) · 21.1 KB
/
sets.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Set tests
isdefined(Main, :OffsetArrays) || @eval Main include("testhelpers/OffsetArrays.jl")
using .Main.OffsetArrays
using Dates
@testset "Construction, collect" begin
@test Set([1,2,3]) isa Set{Int}
@test Set{Int}([3]) isa Set{Int}
data_in = (1,"banana", ())
s = Set(data_in)
data_out = collect(s)
@test s isa Set{Any}
@test data_out isa Array{Any,1}
@test all(map(in(data_out), data_in))
@test length(data_out) == length(data_in)
let f17741 = x -> x < 0 ? false : 1
@test isa(Set(x for x = 1:3), Set{Int})
@test isa(Set(x for x = 1:3 for j = 1:1), Set{Int})
@test isa(Set(sin(x) for x = 1:3), Set{Float64})
@test isa(Set(f17741(x) for x = 1:3), Set{Int})
@test isa(Set(f17741(x) for x = -1:1), Set{Integer})
end
let s1 = Set(["foo", "bar"]), s2 = Set(s1)
@test s1 == s2
x = pop!(s1)
@test s1 != s2
@test !(x in s1)
@test x in s2
push!(s1, "baz")
push!(s2, "baz2")
@test "baz" in s1
@test !("baz" in s2)
@test !("baz2" in s1)
@test "baz2" in s2
end
end
@testset "hash" begin
s1 = Set(["bar", "foo"])
s2 = Set(["foo", "bar"])
s3 = Set(["baz"])
@test hash(s1) == hash(s2)
@test hash(s1) != hash(s3)
d1 = Dict(Set([3]) => 33, Set([2]) => 22)
d2 = Dict(Set([2]) => 33, Set([3]) => 22)
@test hash(d1) != hash(d2)
end
@testset "equality" for eq in (isequal, ==)
@test eq(Set(), Set())
@test !eq(Set(), Set([1]))
@test eq(Set{Any}(Any[1,2]), Set{Int}([1,2]))
@test !eq(Set{Any}(Any[1,2]), Set{Int}([1,2,3]))
# Comparison of unrelated types
@test eq(Set{Int}(), Set{AbstractString}())
@test !eq(Set{Int}(), Set{AbstractString}([""]))
@test !eq(Set{AbstractString}(), Set{Int}([0]))
@test !eq(Set{Int}([1]), Set{AbstractString}())
@test eq(Set{Any}([1,2,3]), Set{Int}([1,2,3]))
@test eq(Set{Int}([1,2,3]), Set{Any}([1,2,3]))
@test !eq(Set{Any}([1,2,3]), Set{Int}([1,2,3,4]))
@test !eq(Set{Int}([1,2,3]), Set{Any}([1,2,3,4]))
@test !eq(Set{Any}([1,2,3,4]), Set{Int}([1,2,3]))
@test !eq(Set{Int}([1,2,3,4]), Set{Any}([1,2,3]))
# Special cases
@test eq(Set([-0.0]), Set([-0.0]))
@test !eq(Set([0.0]), Set([-0.0]))
@test eq(Set([NaN]), Set([NaN]))
@test !eq(Set([NaN]), Set([1.0]))
@test eq(Set([missing]), Set([missing]))
@test !eq(Set([missing]), Set([1]))
end
@testset "hash and == for Set/BitSet" begin
for s = (Set([1]), Set(1:10), Set(-100:7:100))
b = BitSet(s)
@test hash(s) == hash(b)
@test s == b
end
end
@testset "eltype, empty" begin
s1 = empty(Set([1,"hello"]))
@test isequal(s1, Set())
@test ===(eltype(s1), Any)
s2 = empty(Set{Float32}([2.0f0,3.0f0,4.0f0]))
@test isequal(s2, Set())
@test ===(eltype(s2), Float32)
s3 = empty(Set([1,"hello"]),Float32)
@test isequal(s3, Set())
@test ===(eltype(s3), Float32)
end
@testset "show" begin
@test sprint(show, Set()) == "Set(Any[])"
@test sprint(show, Set(['a'])) == "Set(['a'])"
end
@testset "isempty, length, in, push, pop, delete" begin
# also test for no duplicates
s = Set(); push!(s,1); push!(s,2); push!(s,3)
@test !isempty(s)
@test in(1,s)
@test in(2,s)
@test length(s) == 3
push!(s,1); push!(s,2); push!(s,3)
@test length(s) == 3
@test pop!(s,1) == 1
@test !in(1,s)
@test in(2,s)
@test length(s) == 2
@test_throws KeyError pop!(s,1)
@test pop!(s,1,:foo) == :foo
@test length(delete!(s,2)) == 1
@test !in(1,s)
@test !in(2,s)
@test pop!(s) == 3
@test length(s) == 0
@test isempty(s)
@test_throws ArgumentError pop!(s)
@test length(Set(['x',120])) == 2
end
@testset "copy" begin
data_in = (1,2,9,8,4)
s = Set(data_in)
c = copy(s)
@test isequal(s,c)
v = pop!(s)
@test !in(v,s)
@test in(v,c)
push!(s,100)
push!(c,200)
@test !in(100,c)
@test !in(200,s)
end
@testset "copy!" begin
for S = (Set, BitSet)
s = S([1, 2])
for a = ([1], UInt[1], [3, 4, 5], UInt[3, 4, 5])
@test s === copy!(s, Set(a)) == S(a)
@test s === copy!(s, BitSet(a)) == S(a)
end
end
end
@testset "sizehint, empty" begin
s = Set([1])
@test isequal(sizehint!(s, 10), Set([1]))
@test isequal(empty!(s), Set())
end
@testset "rehash!" begin
# Use a pointer type to have defined behavior for uninitialized
# array element
s = Set(["a", "b", "c"])
Base.rehash!(s)
k = s.dict.keys
Base.rehash!(s)
@test length(k) == length(s.dict.keys)
for i in 1:length(k)
if isassigned(k, i)
@test k[i] == s.dict.keys[i]
else
@test !isassigned(s.dict.keys, i)
end
end
@test s == Set(["a", "b", "c"])
end
@testset "start, done, next" begin
for data_in in ((7, 8, 4, 5),
("hello", 23, 2.7, (), [], (1, 8)))
local data_in, s, t
s = Set(data_in)
s_new = Set()
for el in s
push!(s_new, el)
end
@test isequal(s, s_new)
t = tuple(s...)
@test length(t) == length(s)
for e in t
@test in(e,s)
end
end
end
@testset "union" begin
for S in (Set, BitSet, Vector)
s = ∪(S([1,2]), S([3,4]))
@test s == S([1,2,3,4])
s = union(S([5,6,7,8]), S([7,8,9]))
@test s == S([5,6,7,8,9])
s = S([1,3,5,7])
union!(s, (2,3,4,5))
@test s == S([1,3,5,7,2,4]) # order matters for Vector
let s1 = S([1, 2, 3])
@test s1 !== union(s1) == s1
@test s1 !== union(s1, 2:4) == S([1,2,3,4])
@test s1 !== union(s1, [2,3,4]) == S([1,2,3,4])
@test s1 !== union(s1, [2,3,4], S([5])) == S([1,2,3,4,5])
@test s1 === union!(s1, [2,3,4], S([5])) == S([1,2,3,4,5])
end
end
@test union(Set([1]), BitSet()) isa Set{Int}
@test union(BitSet([1]), Set()) isa BitSet
@test union([1], BitSet()) isa Vector{Int}
# union must uniquify
@test union([1, 2, 1]) == union!([1, 2, 1]) == [1, 2]
@test union([1, 2, 1], [2, 2]) == union!([1, 2, 1], [2, 2]) == [1, 2]
end
@testset "intersect" begin
for S in (Set, BitSet, Vector)
s = S([1,2]) ∩ S([3,4])
@test s == S()
s = intersect(S([5,6,7,8]), S([7,8,9]))
@test s == S([7,8])
@test intersect(S([2,3,1]), S([4,2,3]), S([5,4,3,2])) == S([2,3])
let s1 = S([1,2,3])
@test s1 !== intersect(s1) == s1
@test s1 !== intersect(s1, 2:10) == S([2,3])
@test s1 !== intersect(s1, [2,3,4]) == S([2,3])
@test s1 !== intersect(s1, [2,3,4], 3:4) == S([3])
@test s1 === intersect!(s1, [2,3,4], 3:4) == S([3])
end
end
@test intersect(Set([1]), BitSet()) isa Set{Int}
@test intersect(BitSet([1]), Set()) isa BitSet
@test intersect([1], BitSet()) isa Vector{Int}
# intersect must uniquify
@test intersect([1, 2, 1]) == intersect!([1, 2, 1]) == [1, 2]
@test intersect([1, 2, 1], [2, 2]) == intersect!([1, 2, 1], [2, 2]) == [2]
# issue #25801
x = () ∩ (:something,)
y = () ∩ (42,)
@test isempty(x)
@test isempty(y)
@test eltype(x) == eltype(y) == Union{}
end
@testset "setdiff" begin
for S in (Set, BitSet, Vector)
@test setdiff(S([1,2,3]), S()) == S([1,2,3])
@test setdiff(S([1,2,3]), S([1])) == S([2,3])
@test setdiff(S([1,2,3]), S([1,2])) == S([3])
@test setdiff(S([1,2,3]), S([1,2,3])) == S()
@test setdiff(S([1,2,3]), S([4])) == S([1,2,3])
@test setdiff(S([1,2,3]), S([4,1])) == S([2,3])
let s1 = S([1, 2, 3])
@test s1 !== setdiff(s1) == s1
@test s1 !== setdiff(s1, 2:10) == S([1])
@test s1 !== setdiff(s1, [2,3,4]) == S([1])
@test s1 !== setdiff(s1, S([2,3,4]), S([1])) == S()
@test s1 === setdiff!(s1, S([2,3,4]), S([1])) == S()
end
end
@test setdiff(Set([1]), BitSet()) isa Set{Int}
@test setdiff(BitSet([1]), Set()) isa BitSet
@test setdiff([1], BitSet()) isa Vector{Int}
# setdiff must uniquify
@test setdiff([1, 2, 1]) == setdiff!([1, 2, 1]) == [1, 2]
@test setdiff([1, 2, 1], [2, 2]) == setdiff!([1, 2, 1], [2, 2]) == [1]
s = Set([1,3,5,7])
setdiff!(s,(3,5))
@test isequal(s,Set([1,7]))
s = Set([1,2,3,4])
setdiff!(s, Set([2,4,5,6]))
@test isequal(s,Set([1,3]))
# setdiff iterates the shorter set - make sure this algorithm works
sa, sb = Set([1,2,3,4,5,6,7]), Set([2,3,9])
@test Set([1,4,5,6,7]) == setdiff(sa, sb) !== sa
@test Set([1,4,5,6,7]) == setdiff!(sa, sb) === sa
sa, sb = Set([1,2,3,4,5,6,7]), Set([2,3,9])
@test Set([9]) == setdiff(sb, sa) !== sb
@test Set([9]) == setdiff!(sb, sa) === sb
end
@testset "ordering" begin
@test Set() < Set([1])
@test Set([1]) < Set([1,2])
@test !(Set([3]) < Set([1,2]))
@test !(Set([3]) > Set([1,2]))
@test Set([1,2,3]) > Set([1,2])
@test !(Set([3]) <= Set([1,2]))
@test !(Set([3]) >= Set([1,2]))
@test Set([1]) <= Set([1,2])
@test Set([1,2]) <= Set([1,2])
@test Set([1,2]) >= Set([1,2])
@test Set([1,2,3]) >= Set([1,2])
@test !(Set([1,2,3]) >= Set([1,2,4]))
@test !(Set([1,2,3]) <= Set([1,2,4]))
end
@testset "issubset, symdiff" begin
for S in (Set, BitSet, Vector)
for (l,r) in ((S([1,2]), S([3,4])),
(S([5,6,7,8]), S([7,8,9])),
(S([1,2]), S([3,4])),
(S([5,6,7,8]), S([7,8,9])),
(S([1,2,3]), S()),
(S([1,2,3]), S([1])),
(S([1,2,3]), S([1,2])),
(S([1,2,3]), S([1,2,3])),
(S([1,2,3]), S([4])),
(S([1,2,3]), S([4,1])))
@test issubset(intersect(l,r), l)
@test issubset(intersect(l,r), r)
@test issubset(l, union(l,r))
@test issubset(r, union(l,r))
if S === Vector
@test sort(union(intersect(l,r),symdiff(l,r))) == sort(union(l,r))
else
@test union(intersect(l,r),symdiff(l,r)) == union(l,r)
end
end
if S !== Vector
@test ⊆(S([1]), S([1,2]))
@test ⊊(S([1]), S([1,2]))
@test !⊊(S([1]), S([1]))
@test ⊈(S([1]), S([2]))
@test ⊇(S([1,2]), S([1]))
@test ⊋(S([1,2]), S([1]))
@test !⊋(S([1]), S([1]))
@test ⊉(S([1]), S([2]))
end
let s1 = S([1,2,3,4])
@test s1 !== symdiff(s1) == s1
@test s1 !== symdiff(s1, S([2,4,5,6])) == S([1,3,5,6])
@test s1 !== symdiff(s1, S([2,4,5,6]), [1,6,7]) == S([3,5,7])
@test s1 === symdiff!(s1, S([2,4,5,6]), [1,6,7]) == S([3,5,7])
end
end
@test symdiff(Set([1,2,3,4]), Set([2,4,5,6])) == Set([1,3,5,6])
@test symdiff(Set([1]), BitSet()) isa Set{Int}
@test symdiff(BitSet([1]), Set{Int}()) isa BitSet
@test symdiff([1], BitSet()) isa Vector{Int}
# symdiff must NOT uniquify
@test symdiff([1, 2, 1]) == symdiff!([1, 2, 1]) == [2]
@test symdiff([1, 2, 1], [2, 2]) == symdiff!([1, 2, 1], [2, 2]) == [2]
end
@testset "unique" begin
u = unique([1, 1, 2])
@test in(1, u)
@test in(2, u)
@test length(u) == 2
@test unique(iseven, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6]) == [5, 8]
@test unique(n -> n % 3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6]) == [5, 1, 9]
end
@testset "issue 20105" begin
@test @inferred(unique(x for x in 1:1)) == [1]
@test unique(x for x in Any[1, 1.0])::Vector{Real} == [1]
@test unique(x for x in Real[1, 1.0])::Vector{Real} == [1]
@test unique(Integer[1, 1, 2])::Vector{Integer} == [1, 2]
end
@testset "unique!" begin
u = [1,1,3,2,1]
unique!(u)
@test u == [1,3,2]
@test unique!([]) == []
@test unique!(Float64[]) == Float64[]
u = [1,2,2,3,5,5]
@test unique!(u) === u
@test u == [1,2,3,5]
u = [6,5,5,3,3,2,1]
@test unique!(u) === u
@test u == [6,5,3,2,1]
u = OffsetArray([1,2,2,3,5,5], -1)
@test unique!(u) === u
@test u == OffsetArray([1,2,3,5], -1)
u = OffsetArray([5,5,4,4,2,2,0,-1,-1], -1)
@test unique!(u) === u
@test u == OffsetArray([5,4,2,0,-1], -1)
u = OffsetArray(["w","we","w",5,"r",5,5], -1)
@test unique!(u) === u
@test u == OffsetArray(["w","we",5,"r"], -1)
u = [0.0,-0.0,1.0,2]
@test unique!(u) === u
@test u == [0.0,-0.0,1.0,2.0]
u = [1,NaN,NaN,3]
@test unique!(u) === u
@test u[1] == 1
@test isnan(u[2])
@test u[3] == 3
u = [5,"w","we","w","r",5,"w"]
unique!(u)
@test u == [5,"w","we","r"]
u = [1,2,5,1,3,2]
@test unique!(x -> x ^ 2, [1, -1, 3, -3, 5, -5]) == [1, 3, 5]
@test unique!(n -> n % 3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6]) == [5, 1, 9]
@test unique!(iseven, [2, 3, 5, 7, 9]) == [2, 3]
@test unique!(x -> x % 2 == 0 ? :even : :odd, [1, 2, 3, 4, 2, 2, 1]) == [1, 2]
end
@testset "allunique" begin
@test allunique([])
@test allunique(Set())
@test allunique([1,2,3])
@test allunique([:a,:b,:c])
@test allunique(Set([1,2,3]))
@test !allunique([1,1,2])
@test !allunique([:a,:b,:c,:a])
@test allunique(4:7)
@test allunique(1:1)
@test allunique(4.0:0.3:7.0)
@test allunique(4:-1:5) # empty range
@test allunique(7:-1:1) # negative step
@test allunique(Date(2018, 8, 7):Day(1):Date(2018, 8, 11)) # JuliaCon 2018
@test allunique(DateTime(2018, 8, 7):Hour(1):DateTime(2018, 8, 11))
end
@testset "filter(f, ::$S)" for S = (Set, BitSet)
s = S([1,2,3,4])
@test s !== filter( isodd, s) == S([1,3])
@test s === filter!(isodd, s) == S([1,3])
end
@testset "first" begin
@test_throws ArgumentError first(Set())
@test first(Set(2)) == 2
end
@testset "pop!" begin
s = Set(1:5)
@test 2 in s
@test pop!(s, 2) == 2
@test !(2 in s)
@test_throws KeyError pop!(s, 2)
@test pop!(s, 2, ()) == ()
@test 3 in s
@test pop!(s, 3, ()) == 3
@test !(3 in s)
@test pop!(Set(1:2), 2, nothing) == 2
end
@testset "convert" begin
iset = Set([17, 4711])
cfset = convert(Set{Float64}, iset)
@test typeof(cfset) == Set{Float64}
@test cfset == iset
fset = Set([17.0, 4711.0])
ciset = convert(Set{Int}, fset)
@test typeof(ciset) == Set{Int}
@test ciset == fset
ssset = Set(split("foo bar"))
cssset = convert(Set{String}, ssset)
@test typeof(cssset) == Set{String}
@test cssset == Set(["foo", "bar"])
end
@testset "fuzzy testing Set & BitSet" begin
b1, b2 = rand(-1000:1000, 2)
e1 = rand(b1-9:1000) # -9 to have an empty list sometimes
e2 = rand(b2-9:1000)
l1, l2 = rand(1:1000, 2)
a1 = b1 <= e1 ? rand(b1:e1, l1) : Int[]
a2 = b2 <= e2 ? rand(b2:e2, l2) : Int[]
s1, s2 = Set(a1), Set(a2)
t1, t2 = BitSet(a1), BitSet(a2)
for (s, t) = ((s1, t1), (s2, t2))
@test length(s) == length(t)
@test issubset(s, t)
@test issubset(t, s)
@test isempty(s) == isempty(t)
isempty(s) && continue
@test maximum(s) == maximum(t)
@test minimum(s) == minimum(t)
@test extrema(s) == extrema(t)
rs, rt = rand(s), rand(t)
@test rs in s
@test rt in s
@test rs in t
@test rt in t
for y in (rs, rt)
ss = copy(s)
tt = copy(t)
pop!(ss, y)
pop!(tt, y)
@test BitSet(ss) == tt
@test Set(tt) == ss
z = rand(1001:1100) # z ∉ s or t
push!(ss, z)
push!(tt, z)
@test BitSet(ss) == tt
@test Set(tt) == ss
end
end
res = Dict{String,Union{Bool,Vector{Int}}}()
function check(desc, val)
n = val isa Bool ? val : sort!(collect(val))
r = get!(res, desc, n)
if n isa Bool || r !== n
@test r == n
end
end
asbitset(x) = x isa BitSet ? x : BitSet(x)
asset(x) = x isa Set ? x : Set(x)
for x1 = (s1, t1), x2 = (s2, t2)
check("union", union(x1, x2))
check("intersect", intersect(x1, x2))
check("symdiff", symdiff(x1, x2))
check("setdiff", setdiff(x1, x2))
check("== as Bitset", asbitset(x1) == asbitset(x2))
check("== as Set", asset(x1) == asset(x2))
check("issubset", issubset(x1, x2))
if typeof(x1) == typeof(x2)
check("<", x1 < x2)
check("<=", x1 > x2)
check("union!", union!(copy(x1), x2))
check("setdiff!", setdiff!(copy(x1), x2))
x1 isa Set && continue
check("intersect!", intersect!(copy(x1), x2))
check("symdiff!", symdiff!(copy(x1), x2))
end
end
end
@testset "replace! & replace" begin
a = [1, 2, 3, 1]
@test replace(x -> iseven(x) ? 2x : x, a) == [1, 4, 3, 1]
@test replace!(x -> iseven(x) ? 2x : x, a) === a
@test a == [1, 4, 3, 1]
@test replace(a, 1=>0) == [0, 4, 3, 0]
for count = (1, 0x1, big(1))
@test replace(a, 1=>0, count=count) == [0, 4, 3, 1]
end
@test replace!(a, 1=>2) === a
@test a == [2, 4, 3, 2]
@test replace!(x->2x, a, count=0x2) == [4, 8, 3, 2]
d = Dict(1=>2, 3=>4)
@test replace!(x -> x.first > 2 ? x.first=>2*x.second : x, d) === d
@test d == Dict(1=>2, 3=>8)
@test replace(d, (3=>8)=>(0=>0)) == Dict(1=>2, 0=>0)
@test replace!(d, (3=>8)=>(2=>2)) === d
@test d == Dict(1=>2, 2=>2)
s = Set([1, 2, 3])
@test replace(x -> x > 1 ? 2x : x, s) == Set([1, 4, 6])
for count = (1, 0x1, big(1))
@test replace(x -> x > 1 ? 2x : x, s, count=count) in [Set([1, 4, 3]), Set([1, 2, 6])]
end
@test replace(s, 1=>4) == Set([2, 3, 4])
@test replace!(s, 1=>2) === s
@test s == Set([2, 3])
@test replace!(x->2x, s, count=0x1) in [Set([4, 3]), Set([2, 6])]
for count = (0, 0x0, big(0))
@test replace([1, 2], 1=>0, 2=>0, count=count) == [1, 2] # count=0 --> no replacements
end
# test collisions with AbstractSet/AbstractDict
@test replace!(x->2x, Set([3, 6])) == Set([6, 12])
@test replace!(x->2x, Set([1:20;])) == Set([2:2:40;])
@test replace!(kv -> (2kv[1] => kv[2]), Dict(1=>2, 2=>4, 4=>8, 8=>16)) == Dict(2=>2, 4=>4, 8=>8, 16=>16)
# avoid recursive call issue #25384
@test_throws MethodError replace!("")
# test eltype promotion
x = @inferred replace([1, 2], 2=>2.5)
@test x == [1, 2.5] && x isa Vector{Float64}
x = @inferred replace([1, 2], 2=>missing)
@test isequal(x, [1, missing]) && x isa Vector{Union{Int, Missing}}
@test_broken @inferred replace([1, missing], missing=>2)
x = replace([1, missing], missing=>2)
@test x == [1, 2] && x isa Vector{Int}
x = @inferred replace([1, missing], missing=>2, count=1)
@test x == [1, 2] && x isa Vector{Union{Int, Missing}}
x = @inferred replace([1, missing], missing=>missing)
@test isequal(x, [1, missing]) && x isa Vector{Union{Int, Missing}}
x = @inferred replace([1, missing], missing=>2, 1=>missing)
@test isequal(x, [missing, 2]) && x isa Vector{Union{Int, Missing}}
# test that isequal is used
@test replace([NaN, 1.0], NaN=>0.0) == [0.0, 1.0]
@test replace([1, missing], missing=>0) == [1, 0]
end
@testset "⊆, ⊊, ⊈, ⊇, ⊋, ⊉, <, <=, issetequal" begin
a = [1, 2]
b = [2, 1, 3]
for C = (Tuple, identity, Set, BitSet, Base.IdSet{Int})
A = C(a)
B = C(b)
@test A ⊆ B
@test A ⊊ B
@test !(A ⊈ B)
@test !(A ⊇ B)
@test !(A ⊋ B)
@test A ⊉ B
@test !(B ⊆ A)
@test !(B ⊊ A)
@test B ⊈ A
@test B ⊇ A
@test B ⊋ A
@test !(B ⊉ A)
@test !issetequal(A, B)
@test !issetequal(B, A)
if A isa AbstractSet && B isa AbstractSet
@test A <= B
@test A < B
@test !(A >= B)
@test !(A > B)
@test !(B <= A)
@test !(B < A)
@test B >= A
@test B > A
end
for D = (Tuple, identity, Set, BitSet)
@test issetequal(A, D(A))
@test !issetequal(A, D(B))
end
end
end
@testset "optimized union! with max_values" begin
# issue #30315
T = Union{Nothing, Bool}
@test Base.max_values(T) == 3
d = Set{T}()
union!(d, (nothing, true, false))
@test length(d) == 3
@test d == Set((nothing, true, false))
@test nothing in d
@test true in d
@test false in d
for X = (Int8, Int16, Int32, Int64)
@test Base.max_values(Union{Nothing, X}) == (sizeof(X) < sizeof(Int) ?
2^(8*sizeof(X)) + 1 :
typemax(Int))
end
# this does not account for non-empty intersections of the unioned types
@test Base.max_values(Union{Int8,Int16}) == 2^8 + 2^16
end
struct OpenInterval{T}
lower::T
upper::T
end
Base.in(x, i::OpenInterval) = i.lower < x < i.upper
Base.IteratorSize(::Type{<:OpenInterval}) = Base.SizeUnknown()
@testset "Continuous sets" begin
i = OpenInterval(2, 4)
@test 3 ∈ i
@test issubset(3, i)
end