|
| 1 | +# View more python learning tutorial on my Youtube and Youku channel!!! |
| 2 | + |
| 3 | +# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg |
| 4 | +# Youku video tutorial: http://i.youku.com/pythontutorial |
| 5 | + |
| 6 | +from sklearn.datasets import load_iris |
| 7 | +from sklearn.cross_validation import train_test_split |
| 8 | +from sklearn.neighbors import KNeighborsClassifier |
| 9 | + |
| 10 | +iris = load_iris() |
| 11 | +X = iris.data |
| 12 | +y = iris.target |
| 13 | + |
| 14 | +# test train split # |
| 15 | +X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4) |
| 16 | +knn = KNeighborsClassifier(n_neighbors=5) |
| 17 | +knn.fit(X_train, y_train) |
| 18 | +y_pred = knn.predict(X_test) |
| 19 | +print(knn.score(X_test, y_test)) |
| 20 | + |
| 21 | +# this is cross_val_score # |
| 22 | +from sklearn.cross_validation import cross_val_score |
| 23 | +knn = KNeighborsClassifier(n_neighbors=5) |
| 24 | +scores = cross_val_score(knn, X, y, cv=5, scoring='accuracy') |
| 25 | +print(scores) |
| 26 | + |
| 27 | +# this is how to use cross_val_score to choose model and configs # |
| 28 | +from sklearn.cross_validation import cross_val_score |
| 29 | +import matplotlib.pyplot as plt |
| 30 | +k_range = range(1, 31) |
| 31 | +k_scores = [] |
| 32 | +for k in k_range: |
| 33 | + knn = KNeighborsClassifier(n_neighbors=k) |
| 34 | +## loss = -cross_val_score(knn, X, y, cv=10, scoring='mean_squared_error') # for regression |
| 35 | + scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy') # for classification |
| 36 | + k_scores.append(scores.mean()) |
| 37 | + |
| 38 | +plt.plot(k_range, k_scores) |
| 39 | +plt.xlabel('Value of K for KNN') |
| 40 | +plt.ylabel('Cross-Validated Accuracy') |
| 41 | +plt.show() |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | + |
| 46 | + |
| 47 | + |
| 48 | + |
| 49 | + |
| 50 | + |
| 51 | + |
| 52 | + |
| 53 | + |
| 54 | + |
0 commit comments