Skip to content

Latest commit

 

History

History
220 lines (152 loc) · 4.64 KB

README.md

File metadata and controls

220 lines (152 loc) · 4.64 KB

Overview

Wuzzy was created to provide a smattering of some similarity identification stuff. Several simularity identification algorithm implementations are provided, including:

  • Jaccard similarity coefficient
  • Tanimoto coefficient
  • Pearson correlation
  • N-gram edit distance
  • Levenshtein distance
  • Jaro-Winkler distance

Fuzzy wuzzy was a bear, fuzzy wuzzy had no hair, fuzzy wuzzy wasn't very fuzzy, was he? Well, if you aren't sure maybe this library can help! :)

Installing

Wuzzy can be installed via npm (npm install wuzzy).

Examples

Some examples of using Wuzzy can be found in the real-wuzzy repository.

Methods

All bad jokes aside, below is a listing of the available functions. Have fun!

jarowinkler(a, b, t)

Computes the jaro-winkler distance for two given arrays.

NOTE: this implementation is based on the one found in the Lucene Java library.

Examples:

wuzzy.jarowinkler(
        ['D', 'W', 'A', 'Y', 'N', 'E'],
        ['D', 'U', 'A', 'N', 'E']
    );
    // -> 0.840

wuzzy.jarowinkler(
        'DWAYNE',
        'DUANE'
    );
    // -> 0.840

Params:

  • String|Array a - the first string/array to compare
  • String|Array b - the second string/array to compare
  • Number t - the threshold for adding

Return:

  • Number returns the jaro-winkler distance for

levenshtein(a, b, w)

Calculates the levenshtein distance for the two provided arrays and returns the normalized distance.

Examples:

wuzzy.levenshtein(
        ['D', 'W', 'A', 'Y', 'N', 'E'],
        ['D', 'U', 'A', 'N', 'E']
    );
    // -> 0.66666667

    or

wuzzy.levenshtein(
        'DWAYNE',
        'DUANE'
    );
    // -> 0.66666667

Params:

  • String|Array a - the first string/array to compare
  • String|Array b - the second string/array to compare
  • Object w - (optional) a set of key/value pairs

Return:

  • Number returns the levenshtein distance for

ngram(a, b, ng)

Computes the n-gram edit distance for any n (defaults to 2).

NOTE: this implementation is based on the one found in the Lucene Java library.

Examples:

wuzzy.ngram(
        ['D', 'W', 'A', 'Y', 'N', 'E'],
        ['D', 'U', 'A', 'N', 'E']
    );
    // -> 0.583

    or

wuzzy.ngram(
        'DWAYNE',
        'DUANE'
    );
    // -> 0.583

Params:

  • String|Array a - the first string/array to compare
  • String|Array b - the second string/array to compare
  • Number ng - (optional) the n-gram size to work with (defaults to 2)

Return:

  • Number returns the ngram distance for

pearson(a, b)

Calculates a pearson correlation score for two given objects (compares values of similar keys).

Examples:

wuzzy.pearson(
        {a: 2.5, b: 3.5, c: 3.0, d: 3.5, e: 2.5, f: 3.0},
        {a: 3.0, b: 3.5, c: 1.5, d: 5.0, e: 3.5, f: 3.0, g: 5.0}
    );
    // -> 0.396

    or

wuzzy.pearson(
        {a: 2.5, b: 1},
        {o: 3.5, e: 6.0}
    );
    // -> 1.0

Params:

  • Object a - the first object to compare
  • Object b - the second object to compare

Return:

  • Number returns the pearson correlation for

jaccard(a, b)

Calculates the jaccard index for the two provided arrays.

Examples:

wuzzy.jaccard(
        ['a', 'b', 'c', 'd', 'e', 'f'],
        ['a', 'e', 'f']
    );
    // -> 0.5

    or

wuzzy.jaccard(
        'abcdef',
        'aef'
    );
    // -> 0.5

    or 

wuzzy.jaccard(
        ['abe', 'babe', 'cabe', 'dabe', 'eabe', 'fabe'],
        ['babe']
    );
    // -> 0.16666667

Params:

  • String|Array a - the first string/array to compare
  • String|Array b - the second string/array to compare

Return:

  • Number returns the jaccard index for

tanimoto(a, b)

Calculates the tanimoto distance (weighted jaccard index).

Examples:

wuzzy.tanimoto(
        ['a', 'b', 'c', 'd', 'd', 'e', 'f', 'f'],
        ['a', 'e', 'f']
    );
    // -> 0.375

    or

wuzzy.tanimoto(
        'abcddeff',
        'aef'
    );
    // -> 0.375

    or 

wuzzy.tanimoto(
        ['abe', 'babe', 'cabe', 'dabe', 'eabe', 'fabe', 'fabe'],
        ['babe']
    );
    // -> 0.14285714

Params:

  • String|Array a - the first string/array to compare
  • String|Array b - the second string/array to compare

Return:

  • Number returns the tanimoto distance for