-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovie_reviews.py
74 lines (54 loc) · 2 KB
/
movie_reviews.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from keras.datasets import imdb
from keras import models, layers, optimizers, losses, metrics
import numpy as np
import matplotlib.pyplot as plt
from vector_utils import vectorize_sequences
from plotting_utils import plot_metric
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
# Turn every review into a 10,0000 dimension vector
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
# Vectorize Labels
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
# Set aside some examples to measure the training accuracy during training
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer=optimizers.RMSprop(lr=0.001),
loss=losses.mean_squared_error,
metrics=[metrics.binary_accuracy])
model.fit(x_train, y_train, epochs=4, batch_size=512)
results = model.evaluate(x_test, y_test)
print(results)
print(model.predict(x_test)[:20])
"""
history_dict = history.history
print(history_dict.keys())
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']
epochs = range(1, len(loss_values) + 1)
plt.plot(epochs, loss_values, 'bo', label='Training loss')
plt.plot(epochs, val_loss_values, 'b', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.clf()
acc = history_dict['binary_accuracy']
val_acc = history_dict['val_binary_accuracy']
plt.plot(epochs, acc, 'bo', label='Training Accuracy')
plt.plot(epochs, val_acc, 'b', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
"""