-
Notifications
You must be signed in to change notification settings - Fork 0
/
add_nms_plugins.py
65 lines (50 loc) · 2.31 KB
/
add_nms_plugins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
import onnx
import numpy as np
import onnx_graphsurgeon as gs
import argparse
def create_attrs(topK, keepTopK):
attrs = {}
attrs["shareLocation"] = 1 # Default for yolor
attrs["backgroundLabelId"] = -1
attrs["numClasses"] = 18
attrs["topK"] = topK
attrs["keepTopK"] = keepTopK
attrs["scoreThreshold"] = 0.4
attrs["iouThreshold"] = 0.6
attrs["isNormalized"] = 0 # Default yolor did not perform normalization
attrs["clipBoxes"] = 0
attrs["plugin_version"] = "1"
return attrs
def create_and_add_plugin_node(graph, topK, keepTopK):
batch_size = graph.inputs[0].shape[0]
n_boxes = graph.inputs[0].shape[1]
tensors = graph.tensors()
boxes_tensor = tensors["bboxes"]
confs_tensor = tensors["scores"]
num_detections = gs.Variable(name="num_detections").to_variable(dtype=np.int32, shape=[-1, 1])
nmsed_boxes = gs.Variable(name="nmsed_boxes").to_variable(dtype=np.float32, shape=[-1, keepTopK, 4])
nmsed_scores = gs.Variable(name="nmsed_scores").to_variable(dtype=np.float32, shape=[-1, keepTopK])
nmsed_classes = gs.Variable(name="nmsed_classes").to_variable(dtype=np.float32, shape=[-1, keepTopK])
new_outputs = [num_detections, nmsed_boxes, nmsed_scores, nmsed_classes]
print(new_outputs)
mns_node = gs.Node(
op="BatchedNMSDynamic_TRT",
attrs=create_attrs(topK, keepTopK),
inputs=[boxes_tensor, confs_tensor],
outputs=new_outputs)
graph.nodes.append(mns_node)
graph.outputs = new_outputs
return graph.cleanup().toposort()
def main():
parser = argparse.ArgumentParser(description="Add batchedNMSPlugin")
parser.add_argument("-f", "--model", help="Path to the ONNX model generated by export_model.py", default="/data/disk1/hungpham/NudeNet/nude_post_process_add.onnx")
parser.add_argument("-t", "--topK", help="number of bounding boxes for nms", default=200)
parser.add_argument("-k", "--keepTopK", help="bounding boxes to be kept per image", default=100)
args, _ = parser.parse_known_args()
graph = gs.import_onnx(onnx.load(args.model))
graph = create_and_add_plugin_node(graph, int(args.topK), int(args.keepTopK))
onnx.save(gs.export_onnx(graph), args.model.replace('.onnx', '') + "-nms.onnx")
if __name__ =="__main__":
main()