-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriples_extraction.py
184 lines (167 loc) · 7.83 KB
/
triples_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import sys, os
from pyltp import SentenceSplitter, Segmentor, Postagger, Parser, NamedEntityRecognizer, SementicRoleLabeller
import pandas as pd
import numpy as np
#segmentor.release() # 释放模型
class ltp_api(object):
def __init__(self,MODELDIR,exword_path = None):
self.MODELDIR = MODELDIR
self.output = {}
self.words = None
self.postags = None
self.netags = None
self.arcs = None
self.exword_path = exword_path # e.x: '/data1/research/matt/ltp/exwords.txt'
# 分词
self.segmentor = Segmentor()
if not self.exword_path:
# 是否加载额外词典
self.segmentor.load(os.path.join(self.MODELDIR, "cws.model"))
else:
self.segmentor.load_with_lexicon(os.path.join(self.MODELDIR, "cws.model"), self.exword_path)
# 词性标注
self.postagger = Postagger()
self.postagger.load(os.path.join(self.MODELDIR, "pos.model"))
# 依存句法
self.parser = Parser()
self.parser.load(os.path.join(self.MODELDIR, "parser.model"))
# 命名实体识别
self.recognizer = NamedEntityRecognizer()
self.recognizer.load(os.path.join(self.MODELDIR, "ner.model"))
# 语义角色
self.labeller = SementicRoleLabeller()
self.labeller.load(os.path.join(MODELDIR, "pisrl_win.model"))
# 分词
def ltp_segmentor(self,sentence):
words = self.segmentor.segment(sentence)
return words
# 词性标注
def ltp_postagger(self,words):
postags = self.postagger.postag(words)
return postags
# 依存语法
def ltp_parser(self,words, postags):
arcs = self.parser.parse(words, postags)
return arcs
# 命名实体识别
def ltp_recognizer(self,words, postags):
netags = self.recognizer.recognize(words, postags)
return netags
# 语义角色识别
def ltp_labeller(self,words,postags, arcs):
output = []
roles = self.labeller.label(words, postags, arcs)
for role in roles:
output.append([(role.index,arg.name, arg.range.start, arg.range.end) for arg in role.arguments])
return output
def release(self):
self.segmentor.release()
self.postagger.release()
self.parser.release()
self.recognizer.release()
self.labeller.release()
def get_result(self,sentence):
self.words = self.ltp_segmentor(sentence)
self.postags = self.ltp_postagger(self.words)
self.arcs = self.ltp_parser(self.words, self.postags)
self.netags = self.ltp_recognizer(self.words, self.postags)
self.output['role'] = self.ltp_labeller(self.words,self.postags, self.arcs)
# 载入output
self.output['words'] = list(self.words)
self.output['postags'] = list(self.postags)
self.output['arcs'] = [(arc.head, arc.relation) for arc in self.arcs]
self.output['netags'] = list(self.netags)
# 解析模块
def get_tuples_word(word_list1,n1,word_list2,n2):
# 按照顺序,拼接词
result = []
for i,n1s,j,n2s in zip(word_list1,n1,word_list2,n2):
if n1s < n2s:
result.append(''.join([i,j]))
else :# n1s > n2s
result.append(''.join([j,i]))
return result
def Parser2dataframe(words,postags,arcs):
'''
把依存句法解构成dataframe
'''
word_dict = dict(enumerate(words))
match_word = []
relation = []
pos = []
match_word_n = []
# 解读
for n,arc in enumerate(arcs):
relation_word = 'root ' if arc.head - 1 < 0 else word_dict[arc.head - 1] # 核心词,root,为空
match_word.append(relation_word)
relation.append(arc.relation)
pos.append(postags[n])
match_word_n.append(0 if arc.head-1<0 else arc.head-1)
tuples_words = pd.DataFrame({'word':list(word_dict.values()),'word_n':list(word_dict.keys()),\
'match_word':match_word,'relation':relation,'pos':pos,'match_word_n' : match_word_n})
tuples_words['tuples_words'] = get_tuples_word(tuples_words['word'],tuples_words['word_n'],\
tuples_words['match_word'],tuples_words['match_word_n'])
return tuples_words
# 实体名词搭配
def FindEntityCollocation(tuples_words,neg_words = ['是','又','而且','root']):
return [wo for wo in list(tuples_words['tuples_words'][tuples_words['pos']=='n']) if 'root' not in wo]
# 通用内容搭配
def FindCollocation(tuples_words,neg_words = ['是','又','而且']):
SBV_output,ADJ_output = '',''
if sum(tuples_words['relation']=='COO') > 0:
first_word = tuples_words['match_word'][tuples_words['relation']=='SBV']
second_word = tuples_words['word'][tuples_words['relation']=='SBV']
SBV_output = [wo for wo in list(zip(second_word,first_word)) if len(set(neg_words) & set(wo)) == 0 ]
if (sum(tuples_words['relation']=='ADV')>0) or (sum(tuples_words['relation']=='ATT')>0):
# ADV部分
first_word = tuples_words['match_word'][tuples_words['relation']=='ADV']
second_word = tuples_words['word'][tuples_words['relation']=='ADV']
ADJ_output_1 = [wo for wo in list(zip(second_word,first_word)) if len(set(neg_words) & set(wo)) == 0 ]
# ATT部分
first_word = tuples_words['match_word'][tuples_words['relation']=='ATT']
second_word = tuples_words['word'][tuples_words['relation']=='ATT']
ADJ_output_2 = [wo for wo in list(zip(second_word,first_word)) if len(set(neg_words) & set(wo)) == 0 ]
# 相连
ADJ_output = ADJ_output_1 + ADJ_output_2
return SBV_output,ADJ_output
# 并列名词查找
def FindSynonym(tuples_words,neg_words = ['是','又','而且']):
output = ''
if sum(tuples_words['relation']=='COO') > 0:
first_word = tuples_words['match_word'][tuples_words['relation']=='COO']
second_word = tuples_words['word'][tuples_words['relation']=='COO']
output = [wo for wo in list(zip(second_word,first_word)) if len(set(neg_words) & set(wo)) == 0 ]
return output
# 总结核心
# 以:主 + 谓 + 宾为核心
# sentense = '全书有数百个具体的例子,并被组织成了紧密的实用概念框架,能够适用于各个层次上的经理人与创业者。'
def includeSth(sth,list_sth):
return [i in sth for i in list(list_sth)]
def includeSBV_VOB(list_sth):
return True if sum([i in list(list_sth) for i in ['SBV','VOB']])==2 else False
def SBV_VOB_bind(core_data,core_n,words):
SBV_VOB_n = list(core_data[includeSth(['SBV','VOB'],core_data['relation'])]['word_n'])
SBV_VOB_n.extend(list(core_n))
center_words = ''
for i in sorted(SBV_VOB_n):
center_words = ''.join([center_words,words[i]])
return center_words
def CoreExtraction(tuples_words,words):
core_n = tuples_words[tuples_words['relation']=='HED']['word_n']
core_data = tuples_words[tuples_words['match_word_n']==int(core_n)]
core = ''
if includeSBV_VOB(core_data['relation']):
# SBV_VOB构成主谓宾,就是自动摘要了,最好两个都有
#print (SBV_VOB_bind(core_data,words))
core = SBV_VOB_bind(core_data,core_n,words)
elif sum(includeSth(['SBV'],core_data['relation']))>0:
# 主谓关系
#print (list(core_data[includeSth(['SBV'],core_data['relation'])]['tuples_words']))
core = list(core_data[includeSth(['SBV'],core_data['relation'])]['tuples_words'])
elif sum(includeSth(['VOB'],core_data['relation']))>0:
# 动宾关系
#print (list(core_data[includeSth(['VOB'],core_data['relation'])]['tuples_words']))
core = list(core_data[includeSth(['VOB'],core_data['relation'])]['tuples_words'])
elif sum(tuples_words['relation']=='HED')>0:
core = list(tuples_words['word'][tuples_words['relation']=='HED'])
return core