-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathrun.py
195 lines (168 loc) · 8.18 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
import sys
import random
import os
import numpy as np
from collections import defaultdict
sys.path.append(os.getcwd()) #add the env path
from sklearn.model_selection import train_test_split,StratifiedKFold
from main import train
from config import DRUG_EXAMPLE, RESULT_LOG, PROCESSED_DATA_DIR, LOG_DIR, MODEL_SAVED_DIR, ENTITY2ID_FILE, KG_FILE, \
EXAMPLE_FILE, DRUG_VOCAB_TEMPLATE, ENTITY_VOCAB_TEMPLATE, \
RELATION_VOCAB_TEMPLATE, SEPARATOR, THRESHOLD, TRAIN_DATA_TEMPLATE, DEV_DATA_TEMPLATE, \
TEST_DATA_TEMPLATE, ADJ_ENTITY_TEMPLATE, ADJ_RELATION_TEMPLATE, ModelConfig, NEIGHBOR_SIZE
from utils import pickle_dump, format_filename,write_log,pickle_load
def read_entity2id_file(file_path: str, drug_vocab: dict, entity_vocab: dict):
print(f'Logging Info - Reading entity2id file: {file_path}' )
assert len(drug_vocab) == 0 and len(entity_vocab) == 0
with open(file_path, encoding='utf8') as reader:
count=0
for line in reader:
if(count==0):
count+=1
continue
drug, entity = line.strip().split('\t')
drug_vocab[entity]=len(drug_vocab)
entity_vocab[entity] = len(entity_vocab)
def read_example_file(file_path:str,separator:str,drug_vocab:dict):
print(f'Logging Info - Reading example file: {file_path}')
assert len(drug_vocab)>0
examples=[]
with open(file_path,encoding='utf8') as reader:
for idx,line in enumerate(reader):
d1,d2,flag=line.strip().split(separator)[:3]
if d1 not in drug_vocab or d2 not in drug_vocab:
continue
if d1 in drug_vocab and d2 in drug_vocab:
examples.append([drug_vocab[d1],drug_vocab[d2],int(flag)])
examples_matrix=np.array(examples)
print(f'size of example: {examples_matrix.shape}')
X=examples_matrix[:,:2]
y=examples_matrix[:,2:3]
train_data_X, valid_data_X,train_y,val_y = train_test_split(X,y, test_size=0.2,stratify=y)
train_data=np.c_[train_data_X,train_y]
valid_data_X, test_data_X,val_y,test_y = train_test_split(valid_data_X,val_y, test_size=0.5)
valid_data=np.c_[valid_data_X,val_y]
test_data=np.c_[test_data_X,test_y]
return examples_matrix
def read_kg(file_path: str, entity_vocab: dict, relation_vocab: dict, neighbor_sample_size: int):
print(f'Logging Info - Reading kg file: {file_path}')
kg = defaultdict(list)
with open(file_path, encoding='utf8') as reader:
count=0
for line in reader:
if count==0:
count+=1
continue
head, tail, relation = line.strip().split(' ')
if head not in entity_vocab:
entity_vocab[head] = len(entity_vocab)
if tail not in entity_vocab:
entity_vocab[tail] = len(entity_vocab)
if relation not in relation_vocab:
relation_vocab[relation] = len(relation_vocab)
# undirected graph
kg[entity_vocab[head]].append((entity_vocab[tail], relation_vocab[relation]))
kg[entity_vocab[tail]].append((entity_vocab[head], relation_vocab[relation]))
print(f'Logging Info - num of entities: {len(entity_vocab)}, '
f'num of relations: {len(relation_vocab)}')
print('Logging Info - Constructing adjacency matrix...')
n_entity = len(entity_vocab)
adj_entity = np.zeros(shape=(n_entity, neighbor_sample_size), dtype=np.int64)
adj_relation = np.zeros(shape=(n_entity, neighbor_sample_size), dtype=np.int64)
for entity_id in range(n_entity):
all_neighbors = kg[entity_id]
n_neighbor = len(all_neighbors)
sample_indices = np.random.choice(
n_neighbor,
neighbor_sample_size,
replace=False if n_neighbor >= neighbor_sample_size else True
)
adj_entity[entity_id] = np.array([all_neighbors[i][0] for i in sample_indices])
adj_relation[entity_id] = np.array([all_neighbors[i][1] for i in sample_indices])
return adj_entity, adj_relation
def process_data(dataset: str, neighbor_sample_size: int,K:int):
drug_vocab = {}
entity_vocab = {}
relation_vocab = {}
read_entity2id_file(ENTITY2ID_FILE[dataset], drug_vocab, entity_vocab)
pickle_dump(format_filename(PROCESSED_DATA_DIR, DRUG_VOCAB_TEMPLATE, dataset=dataset),drug_vocab)
pickle_dump(format_filename(PROCESSED_DATA_DIR, ENTITY_VOCAB_TEMPLATE, dataset=dataset),entity_vocab)
examples_file=format_filename(PROCESSED_DATA_DIR, DRUG_EXAMPLE, dataset=dataset)
examples = read_example_file(EXAMPLE_FILE[dataset], SEPARATOR[dataset],drug_vocab)
np.save(examples_file,examples)
adj_entity_file = format_filename(PROCESSED_DATA_DIR, ADJ_ENTITY_TEMPLATE, dataset=dataset)
adj_relation_file = format_filename(PROCESSED_DATA_DIR, ADJ_RELATION_TEMPLATE, dataset=dataset)
adj_entity, adj_relation = read_kg(KG_FILE[dataset], entity_vocab, relation_vocab,
neighbor_sample_size)
pickle_dump(format_filename(PROCESSED_DATA_DIR, DRUG_VOCAB_TEMPLATE, dataset=dataset),
drug_vocab)
pickle_dump(format_filename(PROCESSED_DATA_DIR, ENTITY_VOCAB_TEMPLATE, dataset=dataset),
entity_vocab)
pickle_dump(format_filename(PROCESSED_DATA_DIR, RELATION_VOCAB_TEMPLATE, dataset=dataset),
relation_vocab)
adj_entity_file = format_filename(PROCESSED_DATA_DIR, ADJ_ENTITY_TEMPLATE, dataset=dataset)
np.save(adj_entity_file, adj_entity)
print('Logging Info - Saved:', adj_entity_file)
adj_relation_file = format_filename(PROCESSED_DATA_DIR, ADJ_RELATION_TEMPLATE, dataset=dataset)
np.save(adj_relation_file, adj_relation)
print('Logging Info - Saved:', adj_entity_file)
cross_validation(K,examples,dataset,neighbor_sample_size)
def cross_validation(K_fold,examples,dataset,neighbor_sample_size):
subsets=dict()
n_subsets=int(len(examples)/K_fold)
remain=set(range(0,len(examples)-1))
for i in reversed(range(0,K_fold-1)):
subsets[i]=random.sample(remain,n_subsets)
remain=remain.difference(subsets[i])
subsets[K_fold-1]=remain
aggregator_types=['sum','concat','neigh']
for t in aggregator_types:
count=1
temp={'dataset':dataset,'aggregator_type':t,'avg_auc':0.0,'avg_acc':0.0,'avg_f1':0.0,'avg_aupr':0.0}
for i in reversed(range(0,K_fold)):
test_d=examples[list(subsets[i])]
val_d,test_data=train_test_split(test_d,test_size=0.5)
train_d=[]
for j in range(0,K_fold):
if i!=j:
train_d.extend(examples[list(subsets[j])])
train_data=np.array(train_d)
train_log=train(
kfold=count,
dataset=dataset,
train_d=train_data,
dev_d=val_d,
test_d=test_data,
neighbor_sample_size=neighbor_sample_size,
embed_dim=32,
n_depth=2,
l2_weight=1e-7,
lr=2e-2,
#lr=5e-3,
optimizer_type='adam',
batch_size=2048,
aggregator_type=t,
n_epoch=50,
callbacks_to_add=['modelcheckpoint', 'earlystopping']
)
count+=1
temp['avg_auc']=temp['avg_auc']+train_log['test_auc']
temp['avg_acc']=temp['avg_acc']+train_log['test_acc']
temp['avg_f1']=temp['avg_f1']+train_log['test_f1']
temp['avg_aupr']=temp['avg_aupr']+train_log['test_aupr']
for key in temp:
if key=='aggregator_type' or key=='dataset':
continue
temp[key]=temp[key]/K_fold
write_log(format_filename(LOG_DIR, RESULT_LOG[dataset]),temp,'a')
print(f'Logging Info - {K_fold} fold result: avg_auc: {temp["avg_auc"]}, avg_acc: {temp["avg_acc"]}, avg_f1: {temp["avg_f1"]}, avg_aupr: {temp["avg_aupr"]}')
if __name__ == '__main__':
if not os.path.exists(PROCESSED_DATA_DIR):
os.makedirs(PROCESSED_DATA_DIR)
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR)
if not os.path.exists(MODEL_SAVED_DIR):
os.makedirs(MODEL_SAVED_DIR)
model_config = ModelConfig()
process_data('kegg',NEIGHBOR_SIZE['kegg'],5)