forked from dailenson/SDT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
115 lines (106 loc) · 5.83 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import os
from parse_config import cfg, cfg_from_file, assert_and_infer_cfg
import torch
from data_loader.loader import ScriptDataset
import pickle
from models.model import SDT_Generator
import tqdm
from utils.util import writeCache, dxdynp_to_list, coords_render
import lmdb
def main(opt):
""" load config file into cfg"""
cfg_from_file(opt.cfg_file)
assert_and_infer_cfg()
"""setup data_loader instances"""
test_dataset = ScriptDataset(
cfg.DATA_LOADER.PATH, cfg.DATA_LOADER.DATASET, cfg.TEST.ISTRAIN, cfg.MODEL.NUM_IMGS)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=cfg.TRAIN.IMS_PER_BATCH,
shuffle=True,
sampler=None,
drop_last=False,
collate_fn=test_dataset.collate_fn_,
num_workers=cfg.DATA_LOADER.NUM_THREADS)
char_dict = test_dataset.char_dict
writer_dict = test_dataset.writer_dict
os.makedirs(os.path.join(opt.save_dir, 'test'), exist_ok=True)
test_env = lmdb.open(os.path.join(opt.save_dir, 'test'), map_size=1099511627776)
pickle.dump(writer_dict, open(os.path.join(opt.save_dir, 'writer_dict.pkl'), 'wb'))
pickle.dump(char_dict, open(os.path.join(opt.save_dir, 'character_dict.pkl'), 'wb'))
"""build model architecture"""
model = SDT_Generator(num_encoder_layers=cfg.MODEL.ENCODER_LAYERS,
num_head_layers= cfg.MODEL.NUM_HEAD_LAYERS,
wri_dec_layers=cfg.MODEL.WRI_DEC_LAYERS,
gly_dec_layers= cfg.MODEL.GLY_DEC_LAYERS).to('cuda')
if len(opt.pretrained_model) > 0:
model_weight = torch.load(opt.pretrained_model)
model.load_state_dict(model_weight)
print('load pretrained model from {}'.format(opt.pretrained_model))
else:
raise IOError('input the correct checkpoint path')
model.eval()
"""calculate the total batches of generated samples"""
if opt.sample_size == 'all':
batch_samples = len(test_loader)
else:
batch_samples = int(opt.sample_size)*len(writer_dict)/cfg.TRAIN.IMS_PER_BATCH
batch_num, num_count= 0, 0
with torch.no_grad():
for data in tqdm.tqdm(test_loader):
batch_num += 1
if batch_num > batch_samples:
break
else:
# prepare input
coords, coords_len, character_id, writer_id, img_list, char_img = data['coords'].cuda(), \
data['coords_len'].cuda(), \
data['character_id'].long().cuda(), \
data['writer_id'].long().cuda(), \
data['img_list'].cuda(), \
data['char_img'].cuda()
preds = model.inference(img_list, char_img, 120)
bs = character_id.shape[0]
SOS = torch.tensor(bs * [[0, 0, 1, 0, 0]]).unsqueeze(1).to(preds)
preds = torch.cat((SOS, preds), 1) # add the SOS token like GT
preds = preds.detach().cpu().numpy()
test_cache = {}
coords = coords.detach().cpu().numpy()
if opt.store_type == 'online':
for i, pred in enumerate(preds):
pred, _ = dxdynp_to_list(preds[i])
coord, _ = dxdynp_to_list(coords[i])
data = {'coordinates': pred, 'writer_id': writer_id[i].item(),
'character_id': character_id[i].item(), 'coords_gt':coord}
data_byte = pickle.dumps(data)
data_id = str(num_count).encode('utf-8')
test_cache[data_id] = data_byte
num_count += 1
test_cache['num_sample'.encode('utf-8')] = str(num_count).encode()
writeCache(test_env, test_cache)
elif opt.store_type == 'img':
for i, pred in enumerate(preds):
"""intends to blur the boundaries of each sample to fit the actual using situations,
as suggested in 'Deep imitator: Handwriting calligraphy imitation via deep attention networks'"""
sk_pil = coords_render(preds[i], split=True, width=48, height=48, thickness=1, board=0)
sk_pil = sk_pil.resize((113, 113))
character = char_dict[character_id[i].item()]
save_path = os.path.join(opt.save_dir, 'test',
str(writer_id[i].item()) + '_' + character+'.jpg')
try:
sk_pil.save(save_path)
except:
print('error. %s, %s, %s' % (save_path, str(writer_id[i].item()), character))
else:
raise NotImplementedError('only support online or img format')
if __name__ == '__main__':
"""Parse input arguments"""
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', dest='cfg_file', default='configs/CHINESE_CASIA.yml',
help='Config file for training (and optionally testing)')
parser.add_argument('--dir', dest='save_dir', default='Generated/Chinese', help='target dir for storing the generated characters')
parser.add_argument('--pretrained_model', dest='pretrained_model', default='', required=True, help='continue train model')
parser.add_argument('--store_type', dest='store_type', required=True, default='online', help='online or img')
parser.add_argument('--sample_size', dest='sample_size', default='500', required=True, help='randomly generate a certain number of characters for each writer')
opt = parser.parse_args()
main(opt)