forked from JuliaData/CSV.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrows.jl
283 lines (256 loc) · 13.3 KB
/
rows.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# structure for iterating over a csv file
# no automatic type inference is done, but types are allowed to be passed
# for as many columns as desired; `CSV.detect(row, i)` can also be used to
# use the same inference logic used in `CSV.File` for determing a cell's typed value
struct Rows{transpose, O, IO}
name::String
names::Vector{Symbol} # only includes "select"ed columns
types::Vector{Type} # only includes "select"ed columns
columnmap::Vector{Int} # maps "select"ed column index to actual file column index
typecodes::Vector{TypeCode} # includes *all* columns (whether or not selected)
cols::Int64
e::UInt8
buf::IO
datapos::Int64
len::Int
limit::Int64
options::O # Parsers.Options
coloptions::Union{Nothing, Vector{Parsers.Options}}
positions::Vector{Int64}
reusebuffer::Bool
tapes::Vector{Vector{UInt64}}
intsentinels::Vector{Int64}
lookup::Dict{Symbol, Int}
end
function Base.show(io::IO, r::Rows)
println(io, "CSV.Rows(\"$(r.name)\"):")
println(io, "Size: $(r.cols)")
show(io, Tables.schema(r))
end
"""
CSV.Rows(source; kwargs...) => CSV.Rows
Read a csv input (a filename given as a String or FilePaths.jl type, or any other IO source), returning a `CSV.Rows` object.
While similar to [`CSV.File`](@ref), `CSV.Rows` provides a slightly different interface, the tradeoffs including:
* Very minimal memory footprint; while iterating, only the current row values are buffered
* Only provides row access via iteration; to access columns, one can stream the rows into a table type
* Performs no type inference; each column/cell is essentially treated as `Union{String, Missing}`, users can utilize the performant `Parsers.parse(T, str)` to convert values to a more specific type if needed
Opens the file and uses passed arguments to detect the number of columns, ***but not*** column types.
The returned `CSV.Rows` object supports the [Tables.jl](https://github.com/JuliaData/Tables.jl) interface
and can iterate rows. Each row object supports `propertynames`, `getproperty`, and `getindex` to access individual row values.
Note that duplicate column names will be detected and adjusted to ensure uniqueness (duplicate column name `a` will become `a_1`).
For example, one could iterate over a csv file with column names `a`, `b`, and `c` by doing:
```julia
for row in CSV.Rows(file)
println("a=\$(row.a), b=\$(row.b), c=\$(row.c)")
end
```
Supported keyword arguments include:
* File layout options:
* `header=1`: the `header` argument can be an `Int`, indicating the row to parse for column names; or a `Range`, indicating a span of rows to be concatenated together as column names; or an entire `Vector{Symbol}` or `Vector{String}` to use as column names; if a file doesn't have column names, either provide them as a `Vector`, or set `header=0` or `header=false` and column names will be auto-generated (`Column1`, `Column2`, etc.)
* `normalizenames=false`: whether column names should be "normalized" into valid Julia identifier symbols; useful when iterating rows and accessing column values of a row via `getproperty` (e.g. `row.col1`)
* `datarow`: an `Int` argument to specify the row where the data starts in the csv file; by default, the next row after the `header` row is used. If `header=0`, then the 1st row is assumed to be the start of data
* `skipto::Int`: similar to `datarow`, specifies the number of rows to skip before starting to read data
* `limit`: an `Int` to indicate a limited number of rows to parse in a csv file; use in combination with `skipto` to read a specific, contiguous chunk within a file
* `transpose::Bool`: read a csv file "transposed", i.e. each column is parsed as a row
* `comment`: rows that begin with this `String` will be skipped while parsing
* `use_mmap::Bool=!Sys.iswindows()`: whether the file should be mmapped for reading, which in some cases can be faster
* `ignoreemptylines::Bool=false`: whether empty rows/lines in a file should be ignored (if `false`, each column will be assigned `missing` for that empty row)
* Parsing options:
* `missingstrings`, `missingstring`: either a `String`, or `Vector{String}` to use as sentinel values that will be parsed as `missing`; by default, only an empty field (two consecutive delimiters) is considered `missing`
* `delim=','`: a `Char` or `String` that indicates how columns are delimited in a file; if no argument is provided, parsing will try to detect the most consistent delimiter on the first 10 rows of the file
* `ignorerepeated::Bool=false`: whether repeated (consecutive) delimiters should be ignored while parsing; useful for fixed-width files with delimiter padding between cells
* `quotechar='"'`, `openquotechar`, `closequotechar`: a `Char` (or different start and end characters) that indicate a quoted field which may contain textual delimiters or newline characters
* `escapechar='"'`: the `Char` used to escape quote characters in a quoted field
* `strict::Bool=false`: whether invalid values should throw a parsing error or be replaced with `missing`
* `silencewarnings::Bool=false`: if `strict=false`, whether warnings should be silenced
* Iteration options:
* `reusebuffer=false`: while iterating, whether a single row buffer should be allocated and reused on each iteration; only use if each row will be iterated once and not re-used (e.g. it's not safe to use this option if doing `collect(CSV.Rows(file))`)
"""
function Rows(source;
# file options
# header can be a row number, range of rows, or actual string vector
header::Union{Integer, Vector{Symbol}, Vector{String}, AbstractVector{<:Integer}}=1,
normalizenames::Bool=false,
# by default, data starts immediately after header or start of file
datarow::Integer=-1,
skipto::Union{Nothing, Integer}=nothing,
footerskip::Integer=0,
limit::Integer=typemax(Int64),
transpose::Bool=false,
comment::Union{String, Nothing}=nothing,
use_mmap::Bool=!Sys.iswindows(),
ignoreemptylines::Bool=false,
select=nothing,
drop=nothing,
# parsing options
missingstrings=String[],
missingstring="",
delim::Union{Nothing, Char, String}=nothing,
ignorerepeated::Bool=false,
quotechar::Union{UInt8, Char}='"',
openquotechar::Union{UInt8, Char, Nothing}=nothing,
closequotechar::Union{UInt8, Char, Nothing}=nothing,
escapechar::Union{UInt8, Char}='"',
dateformat::Union{String, Dates.DateFormat, Nothing}=nothing,
dateformats::Union{AbstractDict, Nothing}=nothing,
decimal::Union{UInt8, Char}=UInt8('.'),
truestrings::Union{Vector{String}, Nothing}=["true", "True", "TRUE"],
falsestrings::Union{Vector{String}, Nothing}=["false", "False", "FALSE"],
# type options
type=nothing,
types=nothing,
typemap::Dict=Dict{TypeCode, TypeCode}(),
categorical::Union{Bool, Real}=false,
pool::Union{Bool, Real}=0.1,
strict::Bool=false,
silencewarnings::Bool=false,
debug::Bool=false,
parsingdebug::Bool=false,
reusebuffer::Bool=false,
kw...)
h = Header(source, header, normalizenames, datarow, skipto, footerskip, limit, transpose, comment, use_mmap, ignoreemptylines, false, select, drop, missingstrings, missingstring, delim, ignorerepeated, quotechar, openquotechar, closequotechar, escapechar, dateformat, dateformats, decimal, truestrings, falsestrings, type, types, typemap, categorical, pool, strict, silencewarnings, debug, parsingdebug, true)
tapes = [Vector{UInt64}(undef, usermissing(h.typecodes[i]) ? 0 : 1) for i = 1:h.cols]
types = Type[gettype(T) for T in h.typecodes]
columnmap = [i for i = 1:h.cols]
deleteat!(h.names, h.todrop)
deleteat!(types, h.todrop)
deleteat!(columnmap, h.todrop)
lookup = Dict(nm=>i for (i, nm) in enumerate(h.names))
return Rows{transpose, typeof(h.options), typeof(h.buf)}(
h.name,
h.names,
types,
columnmap,
h.typecodes,
h.cols,
h.e,
h.buf,
h.datapos,
h.len,
limit,
h.options,
h.coloptions,
h.positions,
reusebuffer,
tapes,
fill(INT_SENTINEL, h.cols),
lookup
)
end
Tables.rowaccess(::Type{<:Rows}) = true
Tables.rows(r::Rows) = r
Tables.schema(r::Rows) = Tables.Schema(r.names, r.types)
Base.eltype(r::Rows) = Row2
Base.IteratorSize(::Type{<:Rows}) = Base.SizeUnknown()
const EMPTY_TYPEMAP = Dict{TypeCode, TypeCode}()
const EMPTY_POSLENS = Vector{Vector{UInt64}}()
const EMPTY_REFS = Vector{Dict{String, UInt64}}()
const EMPTY_LASTREFS = UInt64[]
@inline function Base.iterate(r::Rows{transpose}, (pos, len, row)=(r.datapos, r.len, 1)) where {transpose}
(pos > len || row > r.limit) && return nothing
pos > len && return nothing
tapes = r.reusebuffer ? r.tapes : [Vector{UInt64}(undef, usermissing(r.typecodes[i]) ? 0 : 1) for i = 1:r.cols]
pos = parserow(1, Val(transpose), r.cols, EMPTY_TYPEMAP, tapes, EMPTY_POSLENS, r.buf, pos, len, r.limit, r.positions, 0.0, EMPTY_REFS, EMPTY_LASTREFS, 0, r.typecodes, r.intsentinels, false, r.options, r.coloptions)
intsentinels = r.reusebuffer ? r.intsentinels : copy(r.intsentinels)
return Row2(r.names, r.types, r.columnmap, r.typecodes, r.lookup, tapes, r.buf, r.e, r.options, r.coloptions, intsentinels), (pos, len, row + 1)
end
struct Row2{O} <: Tables.AbstractRow
names::Vector{Symbol}
types::Vector{Type}
columnmap::Vector{Int}
typecodes::Vector{TypeCode}
lookup::Dict{Symbol, Int}
tapes::Vector{Vector{UInt64}}
buf::Vector{UInt8}
e::UInt8
options::O
coloptions::Union{Nothing, Vector{Parsers.Options}}
intsentinels::Vector{Int64}
end
getnames(r::Row2) = getfield(r, :names)
gettypes(r::Row2) = getfield(r, :types)
getcolumnmap(r::Row2) = getfield(r, :columnmap)
gettypecodes(r::Row2) = getfield(r, :typecodes)
getlookup(r::Row2) = getfield(r, :lookup)
gettapes(r::Row2) = getfield(r, :tapes)
getbuf(r::Row2) = getfield(r, :buf)
gete(r::Row2) = getfield(r, :e)
getoptions(r::Row2) = getfield(r, :options)
getcoloptions(r::Row2) = getfield(r, :coloptions)
getintsentinels(r::Row2) = getfield(r, :intsentinels)
Tables.columnnames(r::Row2) = getnames(r)
Base.checkbounds(r::Row2, i) = 0 < i < length(r)
Tables.getcolumn(r::Row2, nm::Symbol) = Tables.getcolumn(r, getlookup(r)[nm])
Tables.getcolumn(r::Row2, i::Int) = Tables.getcolumn(r, gettypes(r)[i], i, getnames(r)[i])
Base.@propagate_inbounds function Tables.getcolumn(r::Row2, ::Type{Missing}, i::Int, nm::Symbol)
@boundscheck checkbounds(r, i)
return missing
end
Base.@propagate_inbounds function Tables.getcolumn(r::Row2, ::Type{T}, i::Int, nm::Symbol) where {T}
@boundscheck checkbounds(r, i)
j = getcolumnmap(r)[i]
@inbounds x = reinterp_func(T)(gettapes(r)[j][1])
return x
end
Base.@propagate_inbounds function Tables.getcolumn(r::Row2, ::Type{Union{Missing, T}}, i::Int, nm::Symbol) where {T}
@boundscheck checkbounds(r, i)
j = getcolumnmap(r)[i]
@inbounds x = gettapes(r)[j][1]
return ifelse(x === sentinelvalue(T), missing, reinterp_func(T)(x))
end
Base.@propagate_inbounds function Tables.getcolumn(r::Row2, ::Type{Union{Missing, Int64}}, i::Int, nm::Symbol)
@boundscheck checkbounds(r, i)
j = getcolumnmap(r)[i]
@inbounds x = reinterp_func(Int64)(gettapes(r)[j][1])
return ifelse(x === getintsentinels(r)[j], missing, x)
end
Base.@propagate_inbounds function Tables.getcolumn(r::Row2, ::Type{String}, i::Int, nm::Symbol)
@boundscheck checkbounds(r, i)
j = getcolumnmap(r)[i]
@inbounds offlen = gettapes(r)[j][1]
s = PointerString(pointer(getbuf(r), getpos(offlen)), getlen(offlen))
return escapedvalue(offlen) ? unescape(s, gete(r)) : String(s)
end
Base.@propagate_inbounds function Tables.getcolumn(r::Row2, ::Type{Union{Missing, String}}, i::Int, nm::Symbol)
@boundscheck checkbounds(r, i)
j = getcolumnmap(r)[i]
@inbounds offlen = gettapes(r)[j][1]
missingvalue(offlen) && return missing
s = PointerString(pointer(getbuf(r), getpos(offlen)), getlen(offlen))
return escapedvalue(offlen) ? unescape(s, gete(r)) : String(s)
end
@noinline stringsonly() = error("Parsers.parse only allowed on String column types")
Base.@propagate_inbounds function Parsers.parse(::Type{T}, r::Row2, i::Int) where {T}
@boundscheck checkbounds(r, i)
j = getcolumnmap(r)[i]
typecode = gettypecodes(r)[j]
(typecode == STRING || typecode == (STRING | MISSING)) || stringsonly()
@inbounds offlen = gettapes(r)[j][1]
missingvalue(offlen) && return missing
pos = getpos(offlen)
colopts = getcoloptions(r)
opts = colopts === nothing ? getoptions(r) : colopts[j]
x, code, vpos, vlen, tlen = Parsers.xparse(T, getbuf(r), pos, pos + getlen(offlen), opts)
return Parsers.ok(code) ? x : missing
end
Base.@propagate_inbounds function detect(r::Row2, i::Int)
@boundscheck checkbounds(r, i)
j = getcolumnmap(r)[i]
typecode = gettypecodes(r)[j]
(typecode == STRING || typecode == (STRING | MISSING)) || stringsonly()
@inbounds offlen = gettapes(r)[j][1]
missingvalue(offlen) && return missing
pos = getpos(offlen)
colopts = getcoloptions(r)
opts = colopts === nothing ? getoptions(r) : colopts[j]
x = detect(getbuf(r), pos, pos + getlen(offlen) - 1, opts)
return x === nothing ? r[i] : x
end
function Parsers.parse(::Type{T}, r::Row2, nm::Symbol) where {T}
@inbounds x = Parsers.parse(T, r, getlookup(r)[nm])
return x
end
function detect(r::Row2, nm::Symbol)
@inbounds x = detect(r, getlookup(r)[nm])
return x
end