Date: | 2013-04-15 22:00:00 |
---|
作者: | Oz Katz |
---|---|
联系: | https://twitter.com/ozkatz100 |
翻译: | hit9 |
译者注: | 原文链接 - http://ozkatz.github.io/improving-your-python-productivity.html |
Contents
我用Python编程有几年了, 并且我仍然经常惊讶于Python代码可以如何的简洁,如何的 DRY 。 我学到了很多小贴士和技巧,大多数来自于阅读开源项目的源代码,像 Django, Flask, Requests 等。
这里我挑出了几个有时被大家忽略的几条,但是它们在日常工作中会有很大帮助。
大多数Python开发者知道使用列表推导式。你不熟悉这一点? 一个列表推导式是一个创造列表的简短方式:
>>> some_list = [1, 2, 3, 4, 5] >>> another_list = [ x + 1 for x in some_list ] >>> another_list [2, 3, 4, 5, 6]
从Python 3.1开始(也反向地移植到了Python 2.7),我们可以用同样的方式创建集合和字典:
>>> # Set Comprehensions >>> some_list = [1, 2, 3, 4, 5, 2, 5, 1, 4, 8] >>> even_set = { x for x in some_list if x % 2 == 0 } >>> even_set set([8, 2, 4]) >>> # Dict Comprehensions >>> d = { x: x % 2 == 0 for x in range(1, 11) } >>> d {1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False, 10: True}
第一个例子中,我们用 some_list
建立了一个元素不重复的集合,但只有偶数。第二个字典的例子中展示了一个字典的创建,这个字典的键是1到10(包括10),值是布尔值,指明该键是不是一个偶数。
另一个值得注意的地方是集合的文法,我们可以这么简单的创建一个集合:
>>> my_set = {1, 2, 1, 2, 3, 4} >>> my_set set([1, 2, 3, 4])
而没有使用到内建的 set
方法
很明显,但很容易遗忘。计数是一个寻常不过的编程任务,而且大多数情形下这不是个难事。不过计数可以更简单。
Python的 collections 库包含一个 dict
的子类,专门解决计数任务:
>>> from collections import Counter >>> c = Counter('hello world') >>> c Counter({'l': 3, 'o': 2, ' ': 1, 'e': 1, 'd': 1, 'h': 1, 'r': 1, 'w': 1}) >>> c.most_common(2) [('l', 3), ('o', 2)]
JSON是一个很棒的序列格式,如今广泛应用在API和web服务中,但是很难用裸眼来看大数据量的JSON,它们很长,还在一行里。
可以用参数 indent
来更好地打印JSON数据,这在跟 REPL或是日志打交道的时候很有用:
>>> import json >>> print(json.dumps(data)) # No indention {"status": "OK", "count": 2, "results": [{"age": 27, "name": "Oz", "lactose_intolerant": true}, {"age": 29, "name": "Joe", "lactose_intolerant": false}]} >>> print(json.dumps(data, indent=2)) # With indention { "status": "OK", "count": 2, "results": [ { "age": 27, "name": "Oz", "lactose_intolerant": true }, { "age": 29, "name": "Joe", "lactose_intolerant": false } ] }
另外,去看看内建模块 pprint
, 它可以帮助你漂亮地输出其它的东西。
有时我们需要一个建立RPC服务简单而快速的方法。我们需要的只是让程序B去调用程序A(可能在另一个机器上)的方法。
我们不用了解关于这个的任何技术,但是我们只是需要这么个简单的东西,我们可以使用一个叫做 XML-RPC 的协议(对应的Python库实现 SimpleXMLRPCServer )来处理这种事。
这里是一个简单粗糙的文件阅读服务器:
from SimpleXMLRPCServer import SimpleXMLRPCServer def file_reader(file_name): with open(file_name, 'r') as f: return f.read() server = SimpleXMLRPCServer(('localhost', 8000)) server.register_introspection_functions() server.register_function(file_reader) server.serve_forever()
响应它的客户端:
import xmlrpclib proxy = xmlrpclib.ServerProxy('http://localhost:8000/') proxy.file_reader('/tmp/secret.txt')
现在我们就有了一个远程的文件阅读器,除了一点代码,没有外部依赖。(当然,不安全,所以只在"家"用这个吧)
刚我一直在说Python的标准库了,这些库只要你安装Python就会包含在你的Python中。对于大多数的其他任务,这里有大量的社区维护的第三方库来满足我们的需求。
这是一个我挑选Python库的办法:
- 包含一个明确的协议,以便我们使用
- 积极活跃的开发和维护
- 可以用
pip
来安装,可以轻易地重复部署 - 拥有一个合适覆盖率的测试集
如果你发现了一个适合你需求的Python库,不要害羞,大多数开源项目欢迎我们贡献代码和协助,即使你不是一个Python老将。帮助之手随时受欢迎!
原文评论里的一些技巧, 值得一看!
快速在一个目录建立HTTP服务器
python -m SimpleHTTPServer
在 Python 3 中:
python -m http.server
命令行上漂亮地打印JSON:
echo '{"json":"obj"}' | python -mjson.tool
而且,如果你安装了
Pygments
模块,可以高亮地打印JSON:echo '{"json":"obj"}' | python -mjson.tool | pygmentize -l json
注意
{}
是一个空的字典,而不是空的集合