Skip to content

Latest commit

 

History

History

TernaryBERT

TernaryBERT

This directory contains code for TernaryBERT: Distillation-aware Ultra-low Bit BERT.

Envs

conda create -n myenv python=3.6
conda activate myenv
pip install -r requirements.txt

GLUE

Data

Download GLUE https://github.com/nyu-mll/GLUE-baselines

ls data/mnli

shows:

dev_matched.tsv  dev_mismatched.tsv  train.tsv

Model

Preparing a fine-tuend BERT base model on MNLI

ls models/mnli

shows

config.json  pytorch_model.bin  vocab.txt

Distillation-aware quantization training on MNLI

python quant_task_glue.py \
            --data_dir data \
            --model_dir models \
            --task_name mnli \
            --output_dir output \
            --learning_rate 2e-5 \
            --num_train_epochs 3 \
            --weight_bits 2 \
            --input_bits 8 \
            --pred_distill \
            --intermediate_distill \
            --save_fp_model \
            --save_quantized_model

More details of arguments are in quant_task_glue.py

SQuAD

Data

Download data https://rajpurkar.github.io/SQuAD-explorer/

Model

Preparing fine-tuend BERT base model on SQuAD v1.1/v2.0

Distillation-aware quantization training

python quant_task_squad.py \
            --data_dir data/squadv2.0 \
            --model_dir models/squadv2.0 \
            --output_dir output \
            --learning_rate 2e-5 \
            --num_train_epochs 3 \
            --version_2_with_negative \
            --weight_bits 2 \
            --input_bits 8 \
            --pred_distill \
            --intermediate_distill \
            --save_fp_model \
            --save_quantized_model

Reference

@inproceedings{zhang-etal-2020-ternarybert,
    title = {TernaryBERT: Distillation-aware Ultra-low Bit BERT},
    author = {Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang Xin, Qun Liu}
    booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    year = {2020},
}