forked from xlucpu/MOVICS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompDrugsen.Rd
58 lines (47 loc) · 4.76 KB
/
compDrugsen.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/compDrugsen.R
\name{compDrugsen}
\alias{compDrugsen}
\title{Comparison of drug sensitivity}
\usage{
compDrugsen(
moic.res = NULL,
norm.expr = NULL,
drugs = c("Cisplatin", "Paclitaxel"),
tissueType = "all",
test.method = "nonparametric",
clust.col = c("#2EC4B6", "#E71D36", "#FF9F1C", "#BDD5EA", "#FFA5AB", "#011627",
"#023E8A", "#9D4EDD"),
prefix = NULL,
seed = 123456,
fig.path = getwd(),
width = 5,
height = 5
)
}
\arguments{
\item{moic.res}{An object returned by `getMOIC()` with one specified algorithm or `get\%algorithm_name\%` or `getConsensusMOIC()` with a list of multiple algorithms.}
\item{norm.expr}{A matrix of normalized expression data with rows for genes and columns for samples; FPKM or TPM without log2 transformation is recommended.}
\item{drugs}{A string vector to indicate the names of the drugs for which you would like to predict sensitivity, one of Erlotinib, Rapamycin, Sunitinib, PHA-665752, MG-132, Paclitaxel, Cyclopamine, AZ628, Sorafenib, VX-680, Imatinib, TAE684, Crizotinib, Saracatinib, S-Trityl-L-cysteine, Z-LLNle-CHO, Dasatinib, GNF-2, CGP-60474, CGP-082996, A-770041, WH-4-023, WZ-1-84, BI-2536, BMS-536924, BMS-509744, CMK, Pyrimethamine, JW-7-52-1, A-443654, GW843682X, MS-275, Parthenolide, KIN001-135, TGX221, Bortezomib, XMD8-85, Roscovitine, Salubrinal, Lapatinib, GSK269962A, Doxorubicin, Etoposide, Gemcitabine, Mitomycin C, Vinorelbine, NSC-87877, Bicalutamide, QS11, CP466722, Midostaurin, CHIR-99021, AP-24534, AZD6482, JNK-9L, PF-562271, HG-6-64-1, JQ1, JQ12, DMOG, FTI-277, OSU-03012, Shikonin, AKT inhibitor VIII, Embelin, FH535, PAC-1, IPA-3, GSK-650394, BAY 61-3606, 5-Fluorouracil, Thapsigargin, Obatoclax Mesylate, BMS-754807, Lisitinib, Bexarotene, Bleomycin, LFM-A13, GW-2580, AUY922, Phenformin, Bryostatin 1, Pazopanib, LAQ824, Epothilone B, GSK1904529A, BMS345541, Tipifarnib, BMS-708163, Ruxolitinib, AS601245, Ispinesib Mesylate, TL-2-105, AT-7519, TAK-715, BX-912, ZSTK474, AS605240, Genentech Cpd 10, GSK1070916, KIN001-102, LY317615, GSK429286A, FMK, QL-XII-47, CAL-101, UNC0638, XL-184, WZ3105, XMD14-99, AC220, CP724714, JW-7-24-1, NPK76-II-72-1, STF-62247, NG-25, TL-1-85, VX-11e, FR-180204, Tubastatin A, Zibotentan, YM155, NSC-207895, VNLG/124, AR-42, CUDC-101, Belinostat, I-BET-762, CAY10603, Linifanib , BIX02189, CH5424802, EKB-569, GSK2126458, KIN001-236, KIN001-244, KIN001-055, KIN001-260, KIN001-266, Masitinib, MP470, MPS-1-IN-1, BHG712, OSI-930, OSI-027, CX-5461, PHA-793887, PI-103, PIK-93, SB52334, TPCA-1, TG101348, Foretinib, Y-39983, YM201636, Tivozanib, GSK690693, SNX-2112, QL-XI-92, XMD13-2, QL-X-138, XMD15-27; two common chemodrugs (i.e., Cisplatin and Paclitaxel) will be analyzed by default if no indication.}
\item{tissueType}{A string value to specify if you would like to train the models on only a subset of the CGP cell lines (based on the tissue type from which the cell lines originated); Allowed values contain c("all", "aero_digestive_tract", "blood", "bone", "breast", "digestive_system", "lung", "nervous_system", "skin", "urogenital_system") and "all" by default.}
\item{test.method}{A string value to indicate the method for statistical testing. Allowed values contain c('nonparametric', 'parametric'); nonparametric means two-sample wilcoxon rank sum test for two subtypes and Kruskal-Wallis rank sum test for multiple subtypes; parametric means two-sample t-test when only two subtypes are identified, and anova for multiple subtypes comparison; "nonparametric" by default.}
\item{clust.col}{A string vector storing colors for annotating each Subtype.}
\item{prefix}{A string value to indicate the prefix of the output plot.}
\item{seed}{A integer value to indicate the seed for reproducing ridge regression.}
\item{fig.path}{A string value to indicate the output path for storing the boxviolin plot.}
\item{width}{A numeric value to indicate the width of boxviolin plot.}
\item{height}{A numeric value to indicate the height of boxviolin plot.}
}
\value{
Data.frame(s) storing the estimated IC50 of specified drugs per sample within each Subtype.
}
\description{
This function estimates the IC50 of specific drugs for each Subtype by developing a ridge regression predictive model based on all/specific cell lines derived from Genomics of Drug Sensitivity in Cancer (GDSC, \url{https://www.cancerrxgene.org/}).
}
\examples{
# There is no example and please refer to vignette.
}
\references{
Geeleher P, Cox N, Huang R S. (2014). pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 9(9):e107468.
Geeleher P, Cox N J, Huang R S. (2014). Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol, 15(3):1-12.
}